Current strategies for regenerative therapy of spinal cord injury

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Spinal cord injury (SCI) is a leading cause of death and severe disability amongst young people. The incidence of SCI is 0.6–1.0 per 10,000 individuals. Unfortunately, there are no effective methods of restoring locomotor function for individuals with severe SCI. To address this issue, exoskeleton technology controlled using BCI is actively being developed for prosthetic locomotion. Despite the lack of encouraging data for severe spinal cord injuries, regenerative technologies continue to hold promise for spinal cord repair. The limited options for regenerating the central nervous system in humans necessitate creating new sources of neural stem cells for regeneration. Reprogramming autologous somatic cells neurologically can effectively serve as such a source [1]. Nevertheless, the constitution of neuroglial progenitors, which are necessary for regenerating damaged axons of the pyramidal tract, still requires clarification [2]. Some interesting efforts are underway to directly reprogram glial cells in situ using a variety of biotechnological approaches [3]. Overcoming or preventing the formation of a harsh scar tissue at the injury site is the key obstacle to successful regeneration therapy for SCI. Various scaffolds are being developed to facilitate axon regeneration, and several gene therapy agents are being tested to either knock down scar formation factors or activate extracellular matrix remodeling and reparative regeneration.

Neuromodulation shows promise for SCI treatment. Studies indicate that epidural stimulation of the L2-S1 spinal cord in humans and mammals activates SPG neurons, aiding spinal walking generator functions. A potentially successful treatment approach involves scaffolds with reprogrammed cells and neuromodulation [4].

Full Text

Spinal cord injury (SCI) is a leading cause of death and severe disability amongst young people. The incidence of SCI is 0.6–1.0 per 10,000 individuals. Unfortunately, there are no effective methods of restoring locomotor function for individuals with severe SCI. To address this issue, exoskeleton technology controlled using BCI is actively being developed for prosthetic locomotion. Despite the lack of encouraging data for severe spinal cord injuries, regenerative technologies continue to hold promise for spinal cord repair. The limited options for regenerating the central nervous system in humans necessitate creating new sources of neural stem cells for regeneration. Reprogramming autologous somatic cells neurologically can effectively serve as such a source [1]. Nevertheless, the constitution of neuroglial progenitors, which are necessary for regenerating damaged axons of the pyramidal tract, still requires clarification [2]. Some interesting efforts are underway to directly reprogram glial cells in situ using a variety of biotechnological approaches [3]. Overcoming or preventing the formation of a harsh scar tissue at the injury site is the key obstacle to successful regeneration therapy for SCI. Various scaffolds are being developed to facilitate axon regeneration, and several gene therapy agents are being tested to either knock down scar formation factors or activate extracellular matrix remodeling and reparative regeneration.

Neuromodulation shows promise for SCI treatment. Studies indicate that epidural stimulation of the L2-S1 spinal cord in humans and mammals activates SPG neurons, aiding spinal walking generator functions. A potentially successful treatment approach involves scaffolds with reprogrammed cells and neuromodulation [4].

ADDITIONAL INFORMATION

Funding sources. The work was supported by FMBA of Russia (project “Neuromodulation-primates”).

×

About the authors

V. P. Baklaushev

Federal Center of Brain Research and Neurotechnologies FMBA of Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: baklaushev@fccps.ru
Russian Federation, Moscow; Moscow

References

  1. Ahlfors J.E., Azimi A., El-Ayoubi R., et al. Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells // Stem Cell Research & Therapy. 2019. Vol. 10, N 1. P. 166. doi: 10.1186/s13287-019-1255-4
  2. Baklaushev V.P., Durov O.V., Kalsin V.A., et al. Disease modifying treatment of spinal cord injury with directly reprogrammed neural precursor cells in non-human primates // World Journal of Stem Cells. 2021. Vol. 13, N 5. P. 452–469. doi: 10.4252/wjsc.v13.i5.452
  3. Qian H., Kang X., Hu J., et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons // Nature. 2020. Vol. 582, N 7813. P. 550–556. doi: 10.1038/s41586-020-2388-4. Erratum in: Nature. 2020. Vol. 584, N 7820. P. E17. doi: 10.1038/s41586-020-2583-3
  4. Siddiqui A.M., Islam R., Cuellar C.A., et al. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation // NPJ Regenerative Medicine. 2021. Vol. 6, N 1. P. 66. doi: 10.1038/s41536-021-00176-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».