Neural mechanisms of associative cortical plasticity in cognitive domain: Magnetoencephalographic studies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Acquisition of language semantics is widely believed to be facilitated by biological mechanisms of associative learning [1]. However, current understanding of brain mechanisms underlying learning and memory is primarily based on simple models, including animal models, with mechanisms of learning in the cognitive realm largely unknown. Semantic language learning serves as a compelling example of these cognitive processes, whose brain mechanisms pose a challenge to explanation at the level of basic neural networks. Particularly, many processes underlying such learning still lack clear understanding, including the mechanisms that enable correlational coincidence of neuronal representation required for Hebbian plasticity, the reverberatory replay of the to-be associated representations in working memory, and the involvement of consolidation, among others.

We conducted a series of studies modeling the acquisition of semantic knowledge of action-related vocabulary to investigate these questions. We implemented a unique trial-and-error-based procedure for semantic acquisition, in which participants obtained associations between newly introduced pseudowords and actions through active learning. The experimental procedure comprised the delivery of acoustically equivalent pseudowords that were previously unknown to the subjects. Participants were instructed to execute movements of their hands and feet in response to specific pseudowords. Following each trial, participants received either positive or negative feedback depending on their performance. During the learning phase, MEG was recorded, as well as during passive presentations of the same pseudowords before and after learning to control for attention and motor preparation effects. Our analysis involved event-related fields and beta oscillations.

Our experiments showed that cortical plasticity related to word learning could be detected immediately after learning, without the need for prolonged consolidation time [2].

We observed two effects during learning that could contribute to Hebbian plasticity by linking auditory speech representations of pseudowords with associated movements.

First, we observed the reactivation of auditory speech representations during the initialization of movement. This mechanism apparently creates the conditions for temporal coincidence of activations in two representations, specifically an auditory speech representation and a representation of a motor program.

During the learning process, we observed a considerable rise in beta oscillations that occurred during and after action execution. This effect comprised a typical beta-rebound in the sensorimotor regions and a significant surge in beta activity in various associative cortical regions. We postulate that these beta oscillations constitute a reverberation mechanism that reinforces the associative connection and guards it against potential interference [3].

In further experiments, we administered the learning process over two consecutive days with an overnight interval between recordings. We evaluated beta power dynamics during the acquisition of novel pseudowords on day 1 and during task rehearsal following overnight sleep on day 2. Beta event-related synchronization in the frontal regions emerged upon the attainment of the pseudoword learning rules on day 1, and remained unchanged after sleep and subsequent rehearsal on day 2. The prefrontal beta rhythm’s dynamics mirrored the corresponding behavioral changes: subjects executed the task with minimal errors on day 2 upon meeting the learning criterion on day 1. Beta event-related synchronization augmented continuously in the posterior temporal and parietal cortices on day 2 and potentially contributed towards the assimilation of newly-acquired associations in long-term memory.

In summary, our research offers fresh perspectives on the intricate neural mechanisms underlying plasticity in the human brain within the cognitive domain.

全文:

Acquisition of language semantics is widely believed to be facilitated by biological mechanisms of associative learning [1]. However, current understanding of brain mechanisms underlying learning and memory is primarily based on simple models, including animal models, with mechanisms of learning in the cognitive realm largely unknown. Semantic language learning serves as a compelling example of these cognitive processes, whose brain mechanisms pose a challenge to explanation at the level of basic neural networks. Particularly, many processes underlying such learning still lack clear understanding, including the mechanisms that enable correlational coincidence of neuronal representation required for Hebbian plasticity, the reverberatory replay of the to-be associated representations in working memory, and the involvement of consolidation, among others.

We conducted a series of studies modeling the acquisition of semantic knowledge of action-related vocabulary to investigate these questions. We implemented a unique trial-and-error-based procedure for semantic acquisition, in which participants obtained associations between newly introduced pseudowords and actions through active learning. The experimental procedure comprised the delivery of acoustically equivalent pseudowords that were previously unknown to the subjects. Participants were instructed to execute movements of their hands and feet in response to specific pseudowords. Following each trial, participants received either positive or negative feedback depending on their performance. During the learning phase, MEG was recorded, as well as during passive presentations of the same pseudowords before and after learning to control for attention and motor preparation effects. Our analysis involved event-related fields and beta oscillations.

Our experiments showed that cortical plasticity related to word learning could be detected immediately after learning, without the need for prolonged consolidation time [2].

We observed two effects during learning that could contribute to Hebbian plasticity by linking auditory speech representations of pseudowords with associated movements.

First, we observed the reactivation of auditory speech representations during the initialization of movement. This mechanism apparently creates the conditions for temporal coincidence of activations in two representations, specifically an auditory speech representation and a representation of a motor program.

During the learning process, we observed a considerable rise in beta oscillations that occurred during and after action execution. This effect comprised a typical beta-rebound in the sensorimotor regions and a significant surge in beta activity in various associative cortical regions. We postulate that these beta oscillations constitute a reverberation mechanism that reinforces the associative connection and guards it against potential interference [3].

In further experiments, we administered the learning process over two consecutive days with an overnight interval between recordings. We evaluated beta power dynamics during the acquisition of novel pseudowords on day 1 and during task rehearsal following overnight sleep on day 2. Beta event-related synchronization in the frontal regions emerged upon the attainment of the pseudoword learning rules on day 1, and remained unchanged after sleep and subsequent rehearsal on day 2. The prefrontal beta rhythm’s dynamics mirrored the corresponding behavioral changes: subjects executed the task with minimal errors on day 2 upon meeting the learning criterion on day 1. Beta event-related synchronization augmented continuously in the posterior temporal and parietal cortices on day 2 and potentially contributed towards the assimilation of newly-acquired associations in long-term memory.

In summary, our research offers fresh perspectives on the intricate neural mechanisms underlying plasticity in the human brain within the cognitive domain.

ADDITIONAL INFORMATION

Funding sources. Our study was conducted as part of the state assignment of the Ministry of Education of the Russian Federation (No. 073-00038-23-02 of 13.02.2023, entitled “Investigation of the neural mechanisms underlying semantic learning using magnetoencephalography”).

×

作者简介

B. Chernyshev

Moscow State University of Psychology and Education; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: b_chernysh@mail.ru
俄罗斯联邦, Moscow; Moscow

K. Pultsina

Moscow State University of Psychology and Education

Email: b_chernysh@mail.ru
俄罗斯联邦, Moscow

V. Tretyakova

Moscow State University of Psychology and Education

Email: b_chernysh@mail.ru
俄罗斯联邦, Moscow

A. Razorenova

Moscow State University of Psychology and Education

Email: b_chernysh@mail.ru
俄罗斯联邦, Moscow

A. Pavlova

Moscow State University of Psychology and Education

Email: b_chernysh@mail.ru
俄罗斯联邦, Moscow

T. Stroganova

Moscow State University of Psychology and Education

Email: b_chernysh@mail.ru
俄罗斯联邦, Moscow

参考

  1. Pulvermuller F. Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology. 2018;160:1–44. doi: 10.1016/j.pneurobio.2017.07.001
  2. Razorenova AM, Chernyshev BV, Nikolaeva AY, et al. Rapid Cortical Plasticity Induced by Active Associative Learning of Novel Words in Human Adults. Frontiers in Neuroscience. 2020;14:895. doi: 10.3389/fnins.2020.00895
  3. Pavlova A, Tyulenev N, Tretyakova V, et al. Learning of new associations invokes a major change in modulations of cortical beta oscillations in human adults. Psychophysiology. 2023;60(8):e14284. doi: 10.1111/psyp.14284

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».