Study of the role of evolutionary new enhancers in the development of the corpus callosum

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One important aspect of the mammalian brain is the exchange of information between neurons located in different hemispheres. This process evolved during the development of mammals. In marsupial (Marsupialia) and monotreme (Monotremata) mammals, the communication between hemispheres is facilitated through an enlarged anterior commissure. In placental (Eutheria) mammals, a new brain structure, the corpus callosum, emerged during the evolutionary process. The corpus callosum, comprising 80% of the brain’s commissural axons, is the largest commissure in the human body. The corpus callosum is a major contributor to the efficiency of higher neural activities, including memory, decision making, social interaction, and language. A possible explanation for the emergence of a novel structure for interhemispheric interaction is a change in the growth direction of neocortical axons during development. Changes in gene expression levels can regulate this process, which involves controlling axon growth and cell migration in the neocortex. A full comprehension of this process will enable the creation of new animal models for studying cortical malformations and the navigation of axons in the cerebral cortex leading to the formation of interhemispheric connections.

Several enhancers were identified for protein-coding genes with differing expression patterns in neocortical cells of placental and non-placental (marsupial) mammals. Throughout the genomes of the house opossum (Monodelphis domestica) and the house mouse (Mus musculus), the acetylation levels of histone H3 on lysine 27 (H3K27ac) were compared. H3K27ac is considered an epigenetic marker for active gene enhancers. Then, a screening of candidate genes was performed to evaluate their localization and expression levels in the cortex during embryonic development. Thus, the Tbr1 gene was identified. Incorrect expression of this gene may result in changes to cortical development.

The CRISPR/Cas9 system was combined with in utero electroporation to completely delete the active Tbr1 gene enhancer in developing neocortical cells of mouse embryos at day 14 of embryonic development. The impact of this enhancer deletion was then analyzed on the expression of Tbr1 in the upper layers of the cortex, as well as the direction of axon growth and neuronal migration on the 18th day of embryonic development.

A significant reduction in Tbr1 expression was observed in the upper layers of the cortex after deletion of the active enhancer. Only 30% of the electroporated neurons retained Tbr1 expression. Moreover, a considerable delay in neuronal migration was observed in the subventricular zone (41% versus 17% in the control group) and in the upper layers of the cortex (20% versus 35% in the control group). However, the direction of axonal growth remained unchanged: callosal axons effectively crossed the midline and created the corpus callosum.

Thus, expression of the evolutionary novel Tbr1 enhancer is important for neuronal migration during corticogenesis. However, its contribution to the development of the corpus callosum is not fully understood. A detailed analysis of the corpus callosum morphology post-enhancer deletion will be the subsequent step.

Texto integral

One important aspect of the mammalian brain is the exchange of information between neurons located in different hemispheres. This process evolved during the development of mammals. In marsupial (Marsupialia) and monotreme (Monotremata) mammals, the communication between hemispheres is facilitated through an enlarged anterior commissure. In placental (Eutheria) mammals, a new brain structure, the corpus callosum, emerged during the evolutionary process. The corpus callosum, comprising 80% of the brain’s commissural axons, is the largest commissure in the human body. The corpus callosum is a major contributor to the efficiency of higher neural activities, including memory, decision making, social interaction, and language. A possible explanation for the emergence of a novel structure for interhemispheric interaction is a change in the growth direction of neocortical axons during development. Changes in gene expression levels can regulate this process, which involves controlling axon growth and cell migration in the neocortex. A full comprehension of this process will enable the creation of new animal models for studying cortical malformations and the navigation of axons in the cerebral cortex leading to the formation of interhemispheric connections.

Several enhancers were identified for protein-coding genes with differing expression patterns in neocortical cells of placental and non-placental (marsupial) mammals. Throughout the genomes of the house opossum (Monodelphis domestica) and the house mouse (Mus musculus), the acetylation levels of histone H3 on lysine 27 (H3K27ac) were compared. H3K27ac is considered an epigenetic marker for active gene enhancers. Then, a screening of candidate genes was performed to evaluate their localization and expression levels in the cortex during embryonic development. Thus, the Tbr1 gene was identified. Incorrect expression of this gene may result in changes to cortical development.

The CRISPR/Cas9 system was combined with in utero electroporation to completely delete the active Tbr1 gene enhancer in developing neocortical cells of mouse embryos at day 14 of embryonic development. The impact of this enhancer deletion was then analyzed on the expression of Tbr1 in the upper layers of the cortex, as well as the direction of axon growth and neuronal migration on the 18th day of embryonic development.

A significant reduction in Tbr1 expression was observed in the upper layers of the cortex after deletion of the active enhancer. Only 30% of the electroporated neurons retained Tbr1 expression. Moreover, a considerable delay in neuronal migration was observed in the subventricular zone (41% versus 17% in the control group) and in the upper layers of the cortex (20% versus 35% in the control group). However, the direction of axonal growth remained unchanged: callosal axons effectively crossed the midline and created the corpus callosum.

Thus, expression of the evolutionary novel Tbr1 enhancer is important for neuronal migration during corticogenesis. However, its contribution to the development of the corpus callosum is not fully understood. A detailed analysis of the corpus callosum morphology post-enhancer deletion will be the subsequent step.

ADDITIONAL INFORMATION

Funding sources. This study was supported by the Russian Science Foundation, grant No. 21-65-00017.

Authors' contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, and final approval of the version to be published and agree to be accountable for all aspects of the work.

Competing interests. The authors declare that they have no competing interests.

×

Sobre autores

A. Kustova

Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod; Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: elakust@gmail.com
Rússia, Nizhny Novgorod; Tomsk

J. Celis Suescun

Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod

Email: elakust@gmail.com
Rússia, Nizhny Novgorod

V. Rybakova

Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod; Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: elakust@gmail.com
Rússia, Nizhny Novgorod; Tomsk

V. Tarabykin

Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin

Email: elakust@gmail.com
Alemanha, Berlin

Bibliografia

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».