The intensity of transspinal direct current stimulation affects the excitability of the corticospinal system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Transspinal direct current stimulation (tsDCS) affects the corticospinal system, one of the central human systems associated with controlling precise voluntary movements. Stimulation effects are very sensitive to montage and protocols of applied stimulation because they can involve different neuronal mechanisms.

AIM: This study aimed to estimate the effects of parameters of anodal tsDCS applied at the level of the spinal cord (C7–Th1 segments) with cervical enlargement to determine the excitability of the corticospinal system and the correction of motor skills in healthy people.

METHODS: The study involved 81 healthy adults aged 21.19±3.20 years. The effect of tsDCS was assessed using motor-evoked potentials from the first dorsal interosseous (FDI) muscle by transcranial magnetic stimulation in the primary motor cortex before stimulation, immediately after stimulation, and after 15 min.

RESULTS: The application of 11-min anodal tsDCS at the C7–Th1 level with a current of 1.5 mA affects the FDI muscle, initially reducing the amplitude of transcranial magnetic stimulation induced motor-evoked potentials immediately after stimulation. The amplitude of the motor-evoked potentials increases after 15 min of stimulation. tsDCS with an intensity of 2.5 mA does not affect the change in the amplitude of motor-evoked potentials. Similarly, no difference was found in the effect of 1.5 mA stimulation on the correction of motor skills in healthy adults at the nine-hole peg test and the serial reaction time task as with 2.5 mA.

CONCLUSION: This study adds information about the optimally appropriate current intensities of stimulation to induce corticospinal system excitability and the ability of tsDCS to influence motor skills in healthy adults.

About the authors

Alena V. Popyvanova

National Research University Higher School of Economics

Author for correspondence.
Email: popyvanova.al@yandex.ru
ORCID iD: 0000-0002-4413-9421
Russian Federation, Moscow

Ekaterina D. Pomelova

National Research University Higher School of Economics

Email: epomelova@hse.ru
ORCID iD: 0000-0003-0420-0221
Russian Federation, Moscow

Dmitry O. Bredikhin

National Research University Higher School of Economics

Email: dbredihin@hse.ru
ORCID iD: 0000-0002-8291-6180
SPIN-code: 1977-3198

PhD, Student

Russian Federation, Moscow

Maria M. Koriakina

National Research University Higher School of Economics

Email: mkoriakina@hse.ru
ORCID iD: 0000-0001-6737-550X

PhD, Student

Russian Federation, Moscow

Anna N. Shestakova

National Research University Higher School of Economics

Email: a.shestakova@hse.ru
ORCID iD: 0000-0001-9374-9878
SPIN-code: 6010-6538

Cand. Sci. (Biol.)

Russian Federation, Moscow

Evgeny D. Blagovechtchenski

National Research University Higher School of Economics

Email: eblagovechensky@hse.ru
ORCID iD: 0000-0002-0955-6633
SPIN-code: 2811-5723

Cand. Sci. (Biol.)

Russian Federation, Moscow

References

  1. Bocci T, Marceglia S, Vergari M, et al. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability. J Neurophysiol. 2015;114(1):440–446. doi: 10.1152/jn.00490.2014
  2. Cogiamanian F, Ardolino G, Vergari M, et al. Transcutaneous spinal direct current stimulation. Front Psychiatry. 2012;3:63. doi: 10.3389/fpsyt.2012.00063
  3. Jack AS, Hurd C, Martin J, Fouad K. Electrical stimulation as a tool to promote plasticity of the injured spinal cord. J Neurotrauma. 2020;37(18):1933–53. doi: 10.1089/neu.2020.7033
  4. Jamil A, Batsikadze G, Kuo HI, et al. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;595(4):1273–1288. doi: 10.1113/JP272738
  5. Batsikadze G, Moliadze V, Paulus W, et al. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000. doi: 10.1113/jphysiol.2012.249730
  6. Esmaeilpour Z, Marangolo P, Hampstead BM, et al. Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimul. 2018;11(2):310–321. doi: 10.1016/j.brs.2017.12.002
  7. Monte-Silva K, Kuo MF, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6(3):424–432. doi: 10.1016/j.brs.2012.04.011
  8. Lim CY, Shin HI. Noninvasive DC stimulation on neck changes MEP. Neuroreport. 2011;22(16):819–823. doi: 10.1097/WNR.0b013e32834b939d
  9. Dongés SC, D’Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One. 2017;12(2):e0172333. doi: 10.1371/journal.pone.0172333
  10. Fernandes SR, Pereira M, Salvador R, et al. Cervical trans-spinal direct current stimulation: a modelling-experimental approach. J Neuroeng Rehabil. 2019;16(1):123. doi: 10.1186/s12984-019-0589-6
  11. Luke SG. Evaluating significance in linear mixed-effects models in R. Behav Res Methods. 2017;49(4):1494–1502. doi: 10.3758/s13428-016-0809-y
  12. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  13. Lerner O, Friedman J, Frenkel-Toledo S. The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. J Neuroeng Rehabil. 2021;18(1):103. doi: 10.1186/s12984-021-00899-z
  14. Agboada D, Mosayebi Samani M, Jamil A, et al. Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep. 2019;9(1):18185. doi: 10.1038/s41598-019-54621-0
  15. Hassanzahraee M, Nitsche MA, Zoghi M, Jaberzadeh S, et al. Determination of anodal tDCS intensity threshold for reversal of corticospinal excitability: an investigation for induction of counter-regulatory mechanisms. Brain Stimul. 2020;13(3):832–839. doi: 10.1016/j.brs.2020.02.027
  16. Pereira M, Fernandes SR, Miranda PC, et al. Neuromodulation of lower limb motor responses with transcutaneous lumbar spinal cord direct current stimulation. Clin Neurophysiol. 2018;129(9):1999–2009. doi: 10.1016/j.clinph.2018.07.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrode position. General layout of the transcranial magnetic stimulation and tsDCS stimulating systems (a). Layout of the electrodes: the anodal electrode was located above the C7–Th1 segment (red), and the cathodal electrode was on the clavicle (black) (b).

Download (231KB)
3. Fig. 2. Motor-evoked potentials amplitudes are normalized by prestimulation (Tbefore) values for groups receiving tsDSC (blue) and sham (gray) stimulation. The motor-evoked potentials are recorded immediately after the stimulation (T0) and with a 15-min delay (T15). Markers above the columns indicate the statistical significance of the estimated marginal mean difference between the corresponding motor-evoked potentials amplitudes after and before the tsDCS/sham session; * p <0.05; ns: p >0.05). Error bars represent 95% CI of the estimates. The asterisks (*) represent a significant difference between the amplitude of motor-evoked potentials; ns, not significant.

Download (290KB)
4. Fig. 3. Performance timing of participants receiving 1.5 mA anodal tsDSC (yellow), 2.5 mA anodal tsDCS (blue), and sham stimulation (gray), who were assessed separately for the nine-hole peg test (9-HPT) and the serial reaction time task (SRT). No significance was observed for the group factor indicated by the special symbols between bars (ns, p >0.05). Special symbols between groups of bars indicate the significance of the day factor in each of the two ANOVA models; *** p <0.001). The asterisks (***) represents a significant difference; ns, not significant.

Download (330KB)

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».