Elemental homeostasis in children and adolescents after completion of antitumor therapy for malignant neoplasms
- Autores: Zhukovskaya E.V.1,2, Lobaeva T.A.2,3, Karelin A.F.1, Korobeynikova T.V.2,4, Rumyantsev A.G.1, Skalny A.V.2,4
-
Afiliações:
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- RUDN University
- MGIMO-MED Medical University
- First Moscow State Medical University (Sechenov University)
- Edição: Volume 29, Nº 3 (2025): ONCOLOGY
- Páginas: 321-334
- Seção: ONCOLOGY
- URL: https://journals.rcsi.science/2313-0245/article/view/349489
- DOI: https://doi.org/10.22363/2313-0245-2025-29-3-321-334
- EDN: https://elibrary.ru/POWVSY
- ID: 349489
Citar
Texto integral
Resumo
Relevance. As medical research develops, more and more attention is being paid to the study of elemental changes in cancer patients not only as a marker of the disease, but also as a possible complication of the disease. The aim was to study changes in the level of essential and toxic trace elements in patients who have undergone antitumor therapy (AT) for malignant neoplasms (MN). Materials and Methods. As part of a retrospective monocenter study, a group of 214 patients from the Russian Field Medical and Rehabilitation Research Center aged 4 to 17 years was formed. All patients were in remission after the completion of antitumor treatment: 107 patients with hemoblastosis and 107 with solid tumors. The age of the participants ranged from 4.2 to 17.6 years, with an average age of 11.4 years. For a comprehensive assessment of the elemental status in children, hair and blood serum were used, measurements were carried out by mass spectrometry after mineralization of the samples. Results and Discussion. The results of the study of hair samples and blood serum showed that the elemental profile of patients after AT has both similar patterns and distinctive features depending on the histological type of tumor. Conclusions. Patients with solid tumors had a higher accumulation of toxic metals compared to samples taken from patients with tumors of the hematopoiesis organs. Nevertheless, no serious specific changes in elemental homeostasis were observed depending on the histological structure. The results obtained emphasize the importance of careful monitoring of homeostasis parameters to prevent the development of complications of antitumor therapy associated with elemental homeostasis.
Sobre autores
Elena Zhukovskaya
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; RUDN University
Email: lobaeva.t@yandex.ru
ORCID ID: 0000-0002-6899-7105
Código SPIN: 8225-6360
Moscow, Russian Federation
Tatiana Lobaeva
RUDN University; MGIMO-MED Medical University
Autor responsável pela correspondência
Email: lobaeva.t@yandex.ru
ORCID ID: 0000-0002-5677-1141
Código SPIN: 9151-0950
Moscow, Russian Federation; Odintsovo, Moscow region, Russian Federation
Alexander Karelin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: lobaeva.t@yandex.ru
ORCID ID: 0000-0003-4664-5616
Moscow, Russian Federation
Tatiana Korobeynikova
RUDN University; First Moscow State Medical University (Sechenov University)
Email: lobaeva.t@yandex.ru
ORCID ID: 0000-0002-1373-6354
Código SPIN: 7764-6486
Moscow, Russian Federation
Alexander Rumyantsev
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: lobaeva.t@yandex.ru
ORCID ID: 0000-0002-1643-5960
Código SPIN: 2227-6305
Moscow, Russian Federation
Anatoly Skalny
RUDN University; First Moscow State Medical University (Sechenov University)
Email: lobaeva.t@yandex.ru
ORCID ID: 0000-0001-7838-1366
Código SPIN: 5231-9017
Moscow, Russian Federation
Bibliografia
- Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007;121(11):2381–2386. doi.org/10.1002/ijc.23192
- Kolachi NF, Kazi TG, Afridi HI, Kazi NG, Khan S. Investigation of essential trace and toxic elements in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and after mineral supplementation. Clin Nutr. 2012;31 (6):967–973. doi.org/10.1016/j.clnu.2012.04.015
- Lossow K, Schwarz M, Kipp AP. Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol. 2021;42:101900. doi.org/10.1016/j.redox.2021.101900
- Wach S, Weigelt K, Michalke B. Diagnostic potential of major and trace elements in the serum of bladder cancer patients. J Trace Elem Med Biol. 2018;46:150–155. doi.org/10.1016/j.jtemb.2017.12.010
- Jouybari L, Saei Ghare Naz M, Sanagoo A. Toxic elements as biomarkers for breast cancer: a meta-analysis study. Cancer Manag Res. 2018;10:69–79. doi.org/10.2147/CMAR.S151324
- Cobanoglu U, Demir H, Sayi, F, Duran M, Mergan D. Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pacific journal of cancer prevention: APJCP. 2010;11(5),1383–1388.
- Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells. 2020;9(12):2591. doi.org/10.3390/cells9122591
- Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I. Selenium Anticancer Properties and Impact on Cellular Redox Status. Antioxidants (Basel). 2020;9(1):80. doi.org/10.3390/antiox9010080
- Zabłocka-Słowińska K, Płaczkowska S, Prescha A, et al. Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. J Trace Elem Med Biol. 2018;45:78–84. doi.org/10.1016/j.jtemb.2017.09.024
- Zeng H. Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules. 2009;14(3):1263–1278. https://doi.org/10.3390/molecules14031263
- Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167–197. doi.org/10.1016/j.ccell.2020.06.001
- Zhukovskaya EV, Savko SA, Obukhov YA, Karelin AF, Goncharov AP, Zhernov YV, Skalny AV. Serum levels of chemical elements and carious lesions in children after antitumor therapy. Sechenov Medical Journal. 2023;13(4):45–55. doi.org/10.47093/2218-7332.2022.13.4.45-55
- Ahmadi N, Mahjoub S, Haji Hosseini R, TaherKhani M, Moslemi D. Alterations in serum levels of trace element in patients with breast cancer before and after chemotherapy. Caspian J Intern Med. 2018;9(2):134–139. doi.org/10.22088/cjim.9.2.134
- Ruiz-Ramos R, Lopez-Carrillo L, Rios-Perez AD, De Vizcaya-Ruíz A, Cebrian ME. Sodium arsenite induces ROS generation, DNA oxidative damage, HO‑1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF‑7 cells. Mutat Res. 2009;674(1–2):109–115. doi.org/10.1016/j.mrgentox.2008.09.021
- Saikawa H, Nagashima H, Cho K, et al. Relationship between Trace Element in Tumor and Prognosis in Lung Cancer Patients. Medicina (Kaunas). 2021;57(3):209. doi.org/10.3390/medicina57030209
- Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem. 2019;120(2):1080–1105. doi.org/10.1002/jcb.27617
- Yang YW, Dai CM, Chen XH, Feng JF. The Relationship between Serum Trace Elements and Oxidative Stress of Patients with Different Types of Cancer. Oxid Med Cell Longev. 2021;2021:4846951. doi.org/10.1155/2021/4846951
- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi.org/10.1016/j.cell.2011.02.013
- Voorzanger-Rousselot N, Garnero P. Biochemical markers in oncology. Part I: molecular basis. Part II: clinical uses. Cancer Treat Rev. 2007;33(3):230–283. doi.org/10.1016/j.ctrv.2007.01.008
- Seiki M. The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol. 2002;14(5):624–632. doi.org/10.1016/s0955-0674 (02) 00363-0
- Shahbaz U, Yu X bin. An analysis of brain tumor trace elements and their effects. Trace Elements and Electrolytes. 2022;39(01):32–42. doi.org/10.5414/tex01680
- Nawi AM, Chin SF, Azhar Shah S, Jamal R. Tissue and Serum Trace Elements Concentration among Colorectal Patients: A Systematic Review of Case-Control Studies. Iran J Public Health. 2019;48(4):632–643.
- Azin F, Raie RM, Mahmoudi MM. Correlation between the levels of certain carcinogenic and anticarcinogenic trace elements and esophageal cancer in northern Iran. Ecotoxicol Environ Saf. 1998;39(3):179–184. doi.org/10.1006/eesa.1997.1601
- Mulware S.J. Trace elements and carcinogenicity: a subject in review. 3 Biotech. 2013;3(2), 85–96. doi.org/10.1007/s13205-012-0072-6
- Goldhaber, S.B. Trace element risk assessment: essentiality vs. toxicity. Regulatory toxicology and pharmacology. 2003;38(2):232–242.
- Silvera SAN, Rohan TE. Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes & Control. 2007;18, 7–27.
- Chen F, Vallyathan V, Castranova V, Sh, X. Cell apoptosis induced by carcinogenic metals. Molecular and Cellular Biochemistry. 2001;222, 183–188.
- Klotz K, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H. The Health Effects of Aluminum Exposure. Dtsch Arztebl Int. 2017;114(39):653–659. doi: 10.3238/arztebl.2017.0653
- Galván-Arzate S, Santamarı́a A. Thallium toxicity. Toxicology letters, 1998;99(1):1–13.
- Genchi G, Carocci A, Lauria G, Sinicrop, MS, Catalano A. Thallium use, toxicity, and detoxification therapy: An overview. Applied Sciences. 2021;11(18):8322.
- Hernandez-Delgadillo R, García-Cuéllar CM, Sánchez-Pérez Y, Pineda-Aguilar N, Martínez-Martínez MA., Rangel-Padilla EE. Cabral-Romero C. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. International Journal of Nanomedicine. 2018;6089–6097.
- Collin MS, Venkatraman SK, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RS, Swamiappan S. Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances. 2022;7:100094.
- Hollins DM, McKinley MA, Williams C, et al. Beryllium and lung cancer: a weight of evidence evaluation of the toxicological and epidemiological literature. Crit Rev Toxicol. 2009;39(Suppl 1):1–32. doi.org/10.1080/10408440902837967
- Verougstraete V, Lison D, Hotz P. Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. J Toxicol Environ Health B Crit Rev. 2003;6(3):227–255. doi.org/10.1080/10937400306465
- Hartwig A. Cadmium and cancer. Met Ions Life Sci. 2013;11:491–507. doi.org/10.1007/978-94-007-5179-8_15
- Chrysochou E, Koukoulakis K, Kanellopoulos PG, et al. Human serum elements’ levels and leukemia: A first pilot study from an adult Greek cohort. J Trace Elem Med Biol. 2021;68:126833. doi.org/10.1016/j.jtemb.2021.126833
- Lu H, Shi X, Costa M, Huang C. Carcinogenic effect of nickel compounds. Mol Cell Biochem. 2005;279(1–2):45–67. doi.org/10.1007/s11010-005-8215-2
- Yu M, Zhang J. Serum and hair nickel levels and breast cancer: systematic review and meta-analysis Biological Trace Element Research. 2017;179:32–37.
- Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med. 2019;133:276–294. doi.org/10.1016/j.freeradbiomed.2018.03.027
- Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chemical research in toxicology. 2008;21(1):28–44.
- Kaczmarek M, Timofeeva O A, Karaczyn A, Malyguine A, Kasprzak KS, Salnikow K. The role of ascorbate in the modulation of HIF‑1alpha protein and HIF-dependent transcription by chromium (VI) and nickel (II) Free Radical Biol. Med. 2007;42:1246–1257.
- Davidson T, Chen H, Garrick MD, D’Angelo G, Costa M. Soluble nickel interferes with cellular iron homeostasis Mol. Cell. Biochem. 2005;279:157–162
- Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer science. 2009;100(1):9–16.
- Pandrangi SL, Chittineedi P, Chikati R, Lingareddy JR, Nagoor M, Ponnada SK. Role of dietary iron revisited: In metabolism, ferroptosis and pathophysiology of cancer. American Journal of Cancer Research. 2022;12(3):974.
- Caroline L, Rosner F, Kozinn P J. Elevated serum iron, low unbound transferrin and candidiasis in acute leukemia. Blood, 1969;34(4):441–451.
- Kim S, Freeland-Graves JH, Babaei M, Sachdev PK, Beretvas SN. Quantifying the association between acute leukemia and serum zinc, copper, and selenium: a meta-analysis. Leuk Lymphoma. 2019;60(6):1548–1556. doi.org/10.1080/10428194.2018.15400 43
- Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35(1):32–46. doi.org/10.1016/j.ctrv.2008.07.004
- Li Y, Lou J, Hong S, Hou D, Lv Y, Guo Z, Liu H. The role of heavy metals in the development of colorectal cancer. BMC cancer. 2023;23(1):616.
- Bishayee A. Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Letters. 2010;294 (1):1–12.
- Léonard A, Gerber GB. Mutagenicity, carcinogenicity and teratogenicity of vanadium compounds. Mutat Res. 1994;317(1):81–88. doi.org/10.1016/0165-1110 (94) 90013-2
- Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol. 2020;61:126508. doi: 10.1016/j.jtemb.2020.126508
- Barranco WT, Eckhert CD. Boric acid inhibits human prostate cancer cell proliferation. Cancer letters. 2004;216(1):21–29.
- Cebeci E, Yüksel B, Şahin F. Anti-cancer effect of boron derivatives on small-cell lung cancer. Journal of Trace Elements in Medicine and Biology. 2022;70:126923.
- Cheng L, Sonntag DM, de Boer J, Dixon K. Chromium (VI)-induced mutagenesis in the lungs of big blue transgenic mice J. Environ. Pathol. Toxicol. Oncol. 2000;19:239–249.
- Zekavat OR, Karimi M, Majidi F, Bordbar M, Haghpanah S, Parand S, Bozorgi H. Trace elements in children with acute lymphoblastic leukemia. Asian Pacific Journal of Cancer Prevention. 2021;22(S1):43–47.
- Diez M, Arroyo M, Cerdan FJ. Serum and tissue trace metal levels in lung cancer. Oncology. 1989;6:230–4.
- Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Borisov N. The role of the metabolism of zinc and manganese ions in human cancerogenesis. Biomedicines. 2022;10(5):1072.
- De la Vieja A, Santisteban P. Role of iodide metabolism in physiology and cancer. Endocrine-related cancer. 2018;25(4): R225-R245.
- Balogová M, Sharma S, Cherek P, Ólafsson SN, Jónsdóttir S, Ögmundsdóttir HM, Damodaran KK. Cytotoxic effects of halogenated tin phosphinoyldithioformate complexes against several cancer cell lines. Dalton Transactions. 2022;51(34):13119–13128.
- Cao GH, Yan SM, Yuan ZK, Wu L. Liu YF. A study of the relationship between trace element Mo and gastric cancer. World journal of gastroenterology. 1998;4(1):55.
- Odularu AT, Ajibade PA, Mbese JZ. Impact of molybdenum compounds as anticancer agents. Bioinorganic chemistry and applications. 2019. doi: 10.1155/2019/6416198
- Yetişgin F, Bilici M, Esen R. Evaluation of Serum Levels of Trace Elements in Myeloproliferative Neoplasms: A Case-Control Study. Eastern Journal of Medicine. 2021;26(2):344–350. doi: 10.5505/ejm.2021.58751
- De Boeck M, Kirsch-Volders M, Lison D. Cobalt and antimony: genotoxicity and carcinogenicity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003;533(1–2):135–152.
- Wang X, Liang Z, Guo J, Wang M, Zhu R, Li Y, Ren Z. Metal/metalloid levels and variation in lifetime cancer risks among tissues. Human and Ecological Risk Assessment: An International Journal. 2021;27(2):504–516.
- Wang J, Huang P, Lang C, Luo Y, He Z, Chen Y. The progress in the relationship between trace elements and acute lymphoblastic leukemia. Frontiers in Cell and Developmental Biology. 2023;11:1145563.
- Kang M, Zhao L, Ren M, Deng M, Li C. Reduced metallothionein expression induced by Zinc deficiency results in apoptosis in hepatic stellate cell line LX‑2. Int. J. Clin. Exp. Med. 2025;8:20603–20609.
- Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Med Oncol. 2022;40(1):12. doi.org/10.1007/s12032–022–01871–0
- Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343–1374. doi.org/10.1089/ars.2007.1957
- Wallenberg M, Misra S, Wasik AM. Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med. 2014;18(4):671–684. doi.org/10.1111/jcmm.12214
- Ozgen IT, Dagdemir A, Elli M. Hair selenium status in children with leukemia and lymphoma. J Pediatr Hematol Oncol. 2007;29(8):519–522. doi.org/10.1097/MPH.0b013e3180f61b3a
- Evans SO, Khairuddin PF, Jameson MB. Optimising Selenium for Modulation of Cancer Treatments. Anticancer Res. 2017;37(12):6497–6509. doi.org/10.21873/anticanres.12106
- Wang J, Huang P, Lang C, Luo Y, He Z, Chen Y. The progress in the relationship between trace elements and acute lymphoblastic leukemia. Front Cell Dev Biol. 2023;11:1145563. doi.org/10.3389/fcell.2023.1145563
- Radzhabadiev RM, Evstratova VS, Solntseva TN. Evaluation of chemical composition and energy value of of the diets of highly skilled athletes. RUDN Journal of Medicine. 2018; 22(1):106–119. doi: 10.22363/2313-0245-2018-22-1-106-119. (In Russian).
- Gedulyanov MT, Kiyaeva EV. Trace elements content in the hair of patients at the maxillofacial surgery department. RUDN Journal of Medicine. 2022;26(1):42–50. doi: 10.22363/2313-0245-2022-26-1-42-50. (In Russian).
Arquivos suplementares

