Формирование будущего лучевой терапии: роль электронов и FLASH-подхода
- Авторы: Паршенков М.А.1, Сковородко П.П.1, Петрусевич Д.А.1, Макаева Ш.Н.1, Осипова С.Г.1, Ибрагимова Г.Р.1, Истягина А.О.1, Балаева К.А.1, Родионова Г.М.1
-
Учреждения:
- Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
- Выпуск: Том 29, № 3 (2025): ОНКОЛОГИЯ
- Страницы: 283-301
- Раздел: ОНКОЛОГИЯ
- URL: https://journals.rcsi.science/2313-0245/article/view/349486
- DOI: https://doi.org/10.22363/2313-0245-2025-29-3-283-301
- EDN: https://elibrary.ru/OGBXJP
- ID: 349486
Цитировать
Полный текст
Аннотация
Лучевая терапия (ЛТ) остается краеугольным камнем в онкологии, предоставляя целенаправленное лечение различных видов злокачественных новообразований (ЗНО). История ее развития уходит корнями к открытию рентгеновских лучей Вильгельмом Рентгеном и исследованиям радия Марии Кюри. Сегодня ЛТ превратилась в сложную область, охватывающую широкий спектр методов. Однако растущая глобальная проблема ЗНО различных органов подчеркивает необходимость постоянных инноваций для повышения эффективности лечения при минимизации побочных эффектов. Традиционные методы, такие как рентгеновские и гамма-лучи, доказали свою значимость в лечении различных видов рака, но тем не менее, часто сопровождаются непреднамеренным повреждением здоровых тканей. Электронная терапия становится перспективной альтернативой благодаря уникальным дозиметрическим характеристикам, обеспечивающим точное воздействие с ограниченной глубиной проникновения. Низкоэнергетические пучки электронов идеально подходят для лечения поверхностных опухолей, в то время как электроны очень высокой энергией (ЭОВЭ) позволяют воздействовать на глубокие опухоли, соперничая с протонной и тяжело-ионной терапиями. Кроме того, эффект FLASH — феномен, снижающий токсичность для здоровых тканей при сверхвысоких дозах, открывает новые возможности для улучшения качества жизни пациентов. Однако, несмотря на эти достижения в данной области, остаются многочисленные вопросы и вызовы. Ограниченная глубина проникновения, вторичное излучение от тормозного излучения и сложности в системах доставки доз ограничивают широкое клиническое применение. Кроме того, нерешенные биологические вопросы, такие как изменчивость относительной биологической эффективности, требуют дальнейших исследований. Настоящий обзор посвящен обсуждению уникальных преимуществ и ограничений электронной терапии в сравнении с традиционными методами. В нем рассматриваются новейшие достижения (ЭОВЭ, терапия FLASH и гибридные подходы), а также обсуждаются технологические вызовы и будущий потенциал электронных пучков в онкологии. Выводы. Интеграция с последними технологическими достижениями позволяет электронной терапии переосмыслить терапевтические подходы, предлагая более безопасные и персонализированные стратегии лечения злокачественных новообразований.
Об авторах
М. А. Паршенков
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Автор, ответственный за переписку.
Email: misjakj@gmail.com
ORCID iD: 0009-0004-7170-8783
SPIN-код: 7012-6284
г. Москва, Российская Федерация
П. П. Сковородко
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0000-5624-4731
г. Москва, Российская Федерация
Д. А. Петрусевич
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0005-2283-6372
г. Москва, Российская Федерация
Ш. Н. Макаева
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0008-3396-6684
г. Москва, Российская Федерация
С. Г. Осипова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0006-6457-9543
г. Москва, Российская Федерация
Г. Р. Ибрагимова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0007-0478-7137
г. Москва, Российская Федерация
А. О. Истягина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0001-3295-8462
г. Москва, Российская Федерация
К. А. Балаева
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0009-0002-2930-6006
г. Москва, Российская Федерация
Г. М. Родионова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: misjakj@gmail.com
ORCID iD: 0000-0002-0536-9590
SPIN-код: 5657-9984
г. Москва, Российская Федерация
Список литературы
- Trofimova OP, Tkachev SI, Yurieva TV. The Past and Present of Radiation Therapy in Oncology. Clinical Oncohematology. Fundamental Research and Clinical Practice. 2013;6(4):355–364. (In Russian).
- Brailsford JF. Roentgen’s discovery of X-rays; their application to medicine and surgery. British Journal of Radiology. 1946;19(227):453–461. doi: 10.1259/0007-1285-19-227-453
- Abergel R, Aris J, Bolch WE, Dewji SA, Golden A, Hooper DA, Margot D, Menker CG, Paunesku T, Schaue D, Woloschak GE. The enduring legacy of Marie Curie: impacts of radium in 21st century radiological and medical sciences. International Journal of Radiation Biology. 2022;98(3):267–275. doi: 10.1080/09553002.2022.2027542
- World Health Organization. Global cancer burden growing amidst mounting need for services. 2024 Feb 1 [Accessed Aug, 62024]. Available from: https://www.who.int/news/item/01–02–2024‑global-cancer-burden-growing–amidst-mounting-need-for-services
- Upadhyay R, Bazan JG. Advances in Radiotherapy for Breast Cancer. Surgical Oncology Clinics of North America. 2023;32(3):515–536. doi: 10.1016/j.soc.2023.03.002
- Meattini I, Livi L, Lorito N, Becherini C, Bacci M, Visani L, Fozza A, Belgioia L, Loi M, Mangoni M, Lambertini M, Morandi A. Integrating radiation therapy with targeted treatments for breast cancer: From bench to bedside. Cancer Treatment Reviews. 2022;108:102417. doi: 10.1016/j.ctrv.2022.102417
- Ambrose L, Stanton C, Lewis L, Lamoury G, Morgia M, Carroll S, Bromley R, Atyeo J. Potential gains: Comparison of a mono-isocentric three-dimensional conformal radiotherapy (3D-CRT) planning technique to hybrid intensity-modulated radiotherapy (hIMRT) to the whole breast and supraclavicular fossa (SCF) region. Journal of Medical Radiation Sciences. 2022;69(1):75–84. doi: 10.1002/jmrs.473
- Jagsi R, Griffith KA, Moran JM, Matuszak MM, Marsh R, Grubb M, Abu-Isa E, Dilworth JT, Dominello MM, Heimburger D, Lack D, Walker EM, Hayman JA, Vicini F, Pierce LJ; Michigan Radiation Oncology Quality Consortium. Comparative Effectiveness Analysis of 3D-Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy (IMRT) in a Prospective Multicenter Cohort of Patients With Breast Cancer. International Journal of Radiation Oncology, Biology, Physics. 2022;112(3):643–653. doi: 10.1016/j.ijrobp.2021.09.053
- Kamer S, Yilmaz Susluer S, Balci Okcanoglu T, Kayabasi C, Ozmen Yelken B, Hoca S, Tavlayan E, Olacak N, Anacak Y, Olukman M, Gunduz C. Evaluation of the effect of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) techniques on survival response in cell lines with a new radiobiological modeling. Cancer Medicine. 2023;12(19):19874–19888. doi: 10.1002/cam4.6593
- Tumanova K, Nidal S, Popodko A, Stolbovoy A. Most Appropriate Radiation Therapy Techniques for the Breast Cancer Treatment: Dosimetric Analysis of Three Different Radiation Therapy Methods. Radiotherapy and Clinical Oncology. 2023;26:74–97. doi: 10.31487/j.rco.2023.01.01
- Yan M, Gouveia AG, Cury FL, Moideen N, Bratti VF, Patrocinio H, Berlin A, Mendez LC, Moraes FY. Practical considerations for prostate hypofractionation in the developing world. Nature Reviews Urology. 2021;18(11):669–685. doi: 10.1038/s41585–021–00498–6
- Apisarnthanarax S, Barry A, Cao M, Czito B, DeMatteo R, Drinane M, Hallemeier CL, Koay EJ, Lasley F, Meyer J, Owen D, Pursley J, Schaub SK, Smith G, Venepalli NK, Zibari G, Cardenes H. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Practical Radiation Oncology. 2022;12(1):28–51. doi: 10.1016/j.prro.2021.09.004
- Neugebauer J, Blum P, Keiler A, Süß M, Neubauer M, Moser L, Dammerer D. Brachytherapy in the Treatment of Soft-Tissue Sarcomas of the Extremities — A Current Concept and Systematic Review of the Literature. Cancers (Basel). 2023;15(4):1133. doi: 10.3390/cancers15041133
- Peng X, Wei Z, Gerweck LE. Making radiation therapy more effective in the era of precision medicine. Precision Clinical Medicine. 2020;3(4):272–283. doi: 10.1093/pcmedi/pbaa038
- Goodburn RJ, Philippens MEP, Lefebvre TL, Khalifa A, Bruijnen T, Freedman JN, Waddington DEJ, Younus E, Aliotta E, Meliadò G, Stanescu T, Bano W, Fatemi-Ardekani A, Wetscherek A, Oelfke U, van den Berg N, Mason RP, van Houdt PJ, Balter JM, Gurney-Champion OJ. The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magnetic Resonance in Medicine. 2022;88(6):2592–2608. doi: 10.1002/mrm.29450
- Vyas V, Palmer L, Mudge R, Jiang R, Fleck A, Schaly B, Osei E, Charland P. On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry. 2013;38(3):268–273. doi: 10.1016/j.meddos.2013.02.007
- Ma CM, Ding M, Li JS, Lee MC, Pawlicki T, Deng J. A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment. Physics in Medicine and Biology. 2003;48(7):909–924. doi: 10.1088/0031–9155/48/7/308
- Van Eeden L, Sachse KN, Du Plessis FCP. Practical Dosimetry Considerations for Small MLC-Shaped Electron Fields at 60 cm SSD. Journal of Biomedical Physics and Engineering. 2022;12(1):101–108. doi: 10.31661/jbpe.v0i0.2004–1097
- Ronga MG, Cavallone M, Patriarca A, Leite AM, Loap P, Favaudon V, Créhange G, De Marzi L. Back to the Future: Very High-Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers (Basel). 2021;13(19):4942. doi: 10.3390/cancers13194942
- Schüler E, Acharya M, Montay-Gruel P, Loo BW Jr, Vozenin MC, Maxim PG. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Medical Physics. 2022;49(3):2082–2095. doi: 10.1002/mp.15442
- Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Frontiers in Oncology. 2021;11:718636. doi: 10.3389/fonc.2021.718636
- Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. Toxics. 2022;10(10):628. doi: 10.3390/toxics10100628
- Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiotherapy and Oncology. 2021;161:211–221. doi: 10.1016/j.radonc.2021.04.007
- Roobol SJ, van den Bent I, van Cappellen WA, Abraham TE, Paul MW, Kanaar R, Houtsmuller AB, van Gent DC, Essers J. Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. International Journal of Molecular Sciences. 2020;21(18):6602. doi: 10.3390/ijms21186602
- Li CY. Non-canonical roles of apoptotic and DNA double-strand break repair factors in mediating cellular response to ionizing radiation. International Journal of Radiation Biology. 2023;99(6):915–924. doi: 10.1080/09553002.2021.1948139
- Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nature Reviews Molecular Cell Biology. 2020;21(12):765–781. doi: 10.1038/s41580-020-00297-8
- Smith EAK, Winterhalter C, Underwood TSA, Aitkenhead AH, Richardson JC, Merchant MJ, Kirkby NF, Kirby KJ, Mackay RI. A Monte Carlo study of different LET definitions and calculation parameters for proton beam therapy. Biomedical Physics & Engineering Express. 2021;8(1):10.1088/2057–1976/ac3f50. doi: 10.1088/2057–1976/ac3f50
- Nikitaki Z, Velalopoulou A, Zanni V, Tremi I, Havaki S, Kokkoris M, Gorgoulis VG, Koumenis C, Georgakilas AG. Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Reviews in Molecular Medicine. 2022;24: e15. doi: 10.1017/erm.2022.6
- Sergey Koryakin, Kirill Petrushin, Mikhail Parshenkov, Zhanna Uruskhanova, Anastasiia Shchitkova, Elizabeth Pechnikova, Grigory Demyashkin. Kidney morphofunctional features after ascorbic acid administration in a model of acute radiation nephropathy. RUDN Journal of Medicine. 2024;28(3):301–310. doi: 10.22363/2313-0245-2024-28-3-37358. (In Russian)
- Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. International Journal of Radiation Biology. 2023;99(6):964–982. doi: 10.1080/09553002.2022.2078006
- Svendsen K, Guénot D, Svensson JB, Petersson K, Persson A, Lundh O. A focused very high energy electron beam for fractionated stereotactic radiotherapy. Scientific Reports. 2021;11(1):5844. doi: 10.1038/s41598-021-85451-8
- Ghorbani M, Tabatabaei ZS, Vejdani Noghreiyan A, Vosoughi H, Knaup C. Effect of tissue composition on dose distribution in electron beam radiotherapy. Journal of Biomedical Physics and Engineering. 2015;5(1):15–24.
- Akbarpoor R, Khaledi N, Wang X, Samiei F. Optimization of low-energy electron beam production for superficial cancer treatments by Monte Carlo code. Journal of Cancer Research and Therapeutics. 2019;15(3):475–479. doi: 10.4103/jcrt.JCRT_203_18
- Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy — An evaluation of dosimetric performances. Radiotherapy and Oncology. 2024;194:110177. doi: 10.1016/j.radonc.2024.110177
- Böhlen TT, Germond JF, Traneus E, Bourhis J, Vozenin MC, Bailat C, Bochud F, Moeckli R. Characteristics of very high-energy electron beams for the irradiation of deep-seated targets. Medical Physics. 2021;48(7):3958–3967. doi: 10.1002/mp.14891
- Kim MM, Zou W. Ultra-high dose rate FLASH radiation therapy for cancer. Medical Physics. 2023;50(Suppl 1):58–61. doi: 10.1002/mp.16271
- Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Medical Physics. 2022;49(3):1993–2013. doi: 10.1002/mp.15184
- Rosenberger P, Dagar R, Zhang W, Sousa-Castillo A, Neuhaus M, Cortes E, Maier SA, Costa-Vera C, Kling MF, Bergues B. Imaging elliptically polarized infrared near-fields on nanoparticles by strong-field dissociation of functional surface groups. The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics. 2022;76(6):109. doi: 10.1140/epjd/s10053-022-00430-6
- Ali I, Alsbou N, Ahmad S. Quantitative evaluation of dosimetric uncertainties in electron therapy by measurement and calculation using the electron Monte Carlo dose algorithm in the Eclipse treatment planning system. Journal of Applied Clinical Medical Physics. 2022;23(1): e13478. doi: 10.1002/acm2.13478
- Jeynes JCG, Wordingham F, Moran LJ, Curnow A, Harries TJ. Monte Carlo simulations of heat deposition during photothermal skin cancer therapy using nanoparticles. Biomolecules. 2019;9(8):343. doi: 10.3390/biom9080343
- Whitmore L, Mackay RI, van Herk M, Jones JK, Jones RM. Focused VHEE (very high energy electron) beams and dose delivery for radiotherapy applications. Scientific Reports. 2021;11(1):14013. doi: 10.1038/s41598-021-93276-8
- Ronga MG, Deut U, Bonfrate A, Marzi L. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model. Medical Physics. 2023;50(12):8009–8022. doi: 10.1002/mp.16697
- Klimpki G, Zhang Y, Fattori G, Psoroulas S, Weber DC, Lomax A, Meer D. The impact of pencil beam scanning techniques on the effectiveness and efficiency of rescanning moving targets. Physics in Medicine and Biology. 2018;63(14):145006. doi: 10.1088/1361–6560/aacd27
- Zhu J, Penfold SN. Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning. Medical Physics. 2016;43(6):2845–2854. doi: 10.1118/1.4948683
- An C, Zhang W, Dai Z, Li J, Yang X, Wang J, Nie Y. Optimizing focused very-high-energy electron beams for radiation therapy based on Monte Carlo simulation. Scientific Reports. 2024;14(1):27495. doi: 10.1038/s41598-024-79187-4
- Fan X, Niemira B. Gamma Irradiation. In: Electromagnetic Technologies in Food Science. Wiley Editors: Vicente M. Gómez-López, Rajeev Bhat. 2021. doi: 10.1002/9781119759522.ch3
- Tarim U, Gurler O, Korkmaz L. Monte Carlo simulation for the interaction characteristics of gamma-rays with several tissues and water as a tissue substitute. Radiation Effects and Defects in Solids. 2023;178(7):799–807. doi: 10.1080/10420150.2023.2184364
- Becker D, Kumar A, Adhikary A, Sevilla M. Gamma- and Ion-beam DNA Radiation Damage: Theory and Experiment. In: Radiation Chemistry: From Basic to Applications. 1st ed. Cambridge: Royal Society of Chemistry; 2020:426–455. doi: 10.1039/9781839162541-00426
- Karmaker N, Maraz K, Islam F, Haque M, Razzak M, Mollah MZI, Faruque MRI, Khan RA. Fundamental characteristics and application of radiation. GSC Advanced Research and Reviews. 2021;7(1):1–12. doi: 10.30574/GSCARR.2021.7.1.0043
- Bell BI, Vercellino J, Brodin NP, Velten C, Nanduri LSY, Nagesh PKB, Tanaka KE, Fang Y, Wang Y, Macedo R, English J, Schumacher MM, Duddempudi PK, Asp P, Koba W, Shajahan S, Liu L, Tomé WA, Yang WL, Kolesnick R, Guha C. Orthovoltage X-rays exhibit increased efficacy compared with γ-rays in preclinical irradiation. Cancer Research. 2022;82(15):2678–2691. doi: 10.1158/0008-5472.CAN‑22-0656
- Zdora M. Principles of X-ray Imaging. In: X-ray Phase-Contrast Imaging Using Near-Field Speckles. Cham: Springer; 2021:23–48.
- Khaledi N, Khan R, Gräfe JL. Historical progress of stereotactic radiation surgery. Journal of Medical Physics. 2023;48(4):312–327. doi: 10.4103/jmp.jmp_62_23
- Park HR, Jeong SS, Kim JH, Myeong HS, Park HJ, Park KH, Park K, Yoon BW, Park S, Kim JW, Chung HT, Kim DG, Paek SH. Long-term outcome of unilateral acoustic neuromas with or without hearing loss: Over 10 years and beyond after gamma knife radiosurgery. Journal of Korean Medical Science. 2023;38(40): e332. doi: 10.3346/jkms.2023.38.e332
- Nesvick CL, Graffeo CS, Brown PD, Link MJ, Stafford SL, Foote RL, Laack NN, Pollock BE. The role of biological effective dose in predicting obliteration after stereotactic radiosurgery of cerebral arteriovenous malformations. Mayo Clinic Proceedings. 2021;96(5):1157–1164. doi: 10.1016/j.mayocp.2020.09.041
- Al Saiegh F, Liu H, El Naamani K, Mouchtouris N, Chen CJ, Khanna O, Abbas R, Velagapudi L, Baldassari MP, Reyes M, Schmidt RF, Tjoumakaris S, Gooch MR, Rosenwasser RH, Shi W, Jabbour P. Frameless angiography-based gamma knife stereotactic radiosurgery for cerebral arteriovenous malformations: A proof-of-concept study. World Neurosurgery. 2022;164: e808‑e813. doi: 10.1016/j.wneu.2022.05.046
- Piwowarska-Bilska H, Kurkowska S, Birkenfeld B. Individualization of radionuclide therapies: challenges and prospects. Cancers (Basel). 2022;14(14):3418. doi: 10.3390/cancers14143418
- Barrus J, Fernando K, Addington M, Lenards N, Hunzeker A, Konieczkowski DJ. Robust VMAT treatment planning for extremity soft tissue sarcomas. Medical Dosimetry. 2023;48(4):256–260. doi: 10.1016/j.meddos.2023.06.001
- Rezaee M, Adhikary A. The effects of particle LET and fluence on the complexity and frequency of clustered DNA damage. DNA (Basel). 2024;4(1):34–51. doi: 10.3390/dna4010002
- Kumar S, Suman S, Angdisen J, Moon BH, Kallakury BVS, Datta K, Fornace AJ Jr. Effects of high-linear-energy-transfer heavy ion radiation on intestinal stem cells: implications for gut health and tumorigenesis. Cancers (Basel). 2024;16(19):3392. doi: 10.3390/cancers16193392
- Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, Bai H, Liu X, Chen Q, Li L, Yang H. Recent development in X-ray imaging technology: future and challenges. Research. 2021;2021:9892152. doi: 10.34133/2021/9892152
- Lu L, Sun M, Lu Q, Wu T, Huang B. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy. 2021;79:105437. doi: 10.1016/j.nanoen.2020.105437
- Malinowski M. Using X-ray technology to sterilize medical devices. American Journal of Biomedical Science & Research. 2021;12. doi: 10.34297/AJBSR.2021.12.001755
- Egwonor LI, Aworinde OR, Lekan OK, Osemudiamhen DA. Medical imaging: A critical review on X-ray imaging for the detection of infection. Journal of Infection Imaging. 2024. doi: 10.1007/s44174-024-00212-1
- Garnett R. A comprehensive review of dual-energy and multi-spectral computed tomography. Clinical Imaging. 2020;67:160–169. doi: 10.1016/j.clinimag.2020.07.030
- Omar A, Andreo P, Poludniowski G. A model for the energy and angular distribution of X rays emitted from an X-ray tube. Part I. Bremsstrahlung production. Medical Physics. 2020;47(10):4763–4774. doi: 10.1002/mp.14359
- Wong LWW, Shi X, Karnieli A, Lim J, Kumar S, Carbajo S, Kaminer I, Wong LJ. Free-electron crystals for enhanced X-ray radiation. Light: Science and Applications. 2024;13(1):29. doi: 10.1038/s41377-023-01363-4
- Lisovska VV, Malykhina T. Computer simulation of the angular distribution of electrons and bremsstrahlung photons in tantalum converter. Journal of Radiation Physics and Engineering. 2020;2. doi: 10.26565/2312-4334-2020-2-07
- Nakano T, Akamatsu K, Tsuda M, Tujimoto A, Hirayama R, Hiromoto T, Tamada T, Ide H, Shikazono N. Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: visualization and analysis with atomic force microscopy. Proceedings of the National Academy of Sciences USA. 2022;119(33): e2119132119. doi: 10.1073/pnas.2119132119
- Baena-Lopez L, Baonza A, Estella C, Herranz H. Editorial: Regulation and coordination of the different DNA damage responses and their role in tissue homeostasis maintenance. Frontiers in Cell and Developmental Biology. 2023;11:1175155. doi: 10.3389/fcell.2023.1175155
- Deng S, Vlatkovic T, Li M, Zhan T, Veldwijk MR, Herskind C. Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers (Basel). 2022;14(19):4874. doi: 10.3390/cancers14194874
- Ren Y, Yang P, Li C, Wang WA, Zhang T, Li J, Li H, Dong C, Meng W, Zhou H. Ionizing radiation triggers mitophagy to enhance DNA damage in cancer cells. Cell Death Discovery. 2023;9(1):267. doi: 10.1038/s41420-023-01573-0
- Pogue BW, Zhang R, Cao X, Jia JM, Petusseau A, Bruza P, Vinogradov SA. Review of in vivo optical molecular imaging and sensing from x-ray excitation. Journal of Biomedical Optics. 2021;26(1):010902. doi: 10.1117/1.JBO.26.1.010902
- Lim CH, Lee J, Choi Y, Park JW, Kim HK. Advanced container inspection system based on dual-angle X-ray imaging method. Journal of Instrumentation. 2021;16: P08037. doi: 10.1088/1748-0221/16/08/P08037
- Flay N, Brown S, Sun W, Blumensath T, Su R. Effects of off-focal radiation on dimensional measurements in industrial cone-beam micro-focus X-ray computed tomography systems. Precision Engineering. 2020;68:93–104. doi: 10.1016/j.precisioneng.2020.08.014
- Ahmed SK, Grams MP, Locher SE, McLemore LB, Sio TT, Martenson JA. Adaptation of the Stanford technique for treatment of bulky cutaneous T-cell lymphoma of the head. Practical Radiation Oncology. 2016;6(3):183–186. doi: 10.1016/j.prro.2015.10.021
- Schüler E, Eriksson K, Hynning E, Hancock SL, Hiniker SM, Bazalova-Carter M, Wong T, Le QT, Loo BW Jr, Maxim PG. Very high-energy electron (VHEE) beams in radiation therapy: Treatment plan comparison between VHEE, VMAT, and PPBS. Medical Physics. 2017;44(6):2544–2555. doi: 10.1002/mp.12233
- Al-Shareef JM, Abousahmeen AM, Saud MAB, Al-Aqmar DM, Elfagieh M, Alwoddi BA, Adam AA, Eltayef NE, Saied FSB, Makki AM, Saleem AB. Comparison of photon versus electron for tumor bed boost radiotherapy post-breast conserving surgery. Journal of Medical Imaging and Radiation Sciences. 2023;54(3):421–428. doi: 10.1016/j.jmir.2023.05.003
- Lee VWY, Liu ACH, Cheng KW, Chiang CL, Lee VH. Dosimetric benefits of 3D-printed modulated electron bolus following lumpectomy and whole-breast radiotherapy for left breast cancer. Medical Dosimetry. 2023;48(1):37–43. doi: 10.1016/j.meddos.2022.10.001
- Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modulated radiotherapy treatment planning: A review of recent innovations. British Journal of Radiology. 2018;91(1092):20180270. doi: 10.1259/bjr.20180270
- Roa D, Kuo J, Moyses H, Taborek P, Tajima T, Mourou G, Tamanoi F. Fiber-optic based laser wakefield accelerated electron beams and potential applications in radiotherapy cancer treatments. Photonics. 2024;9(6):403. doi: 10.3390/photonics9060403
- Lazzarini C, Grittani G, Valenta P, Zymak I, Antipenkov R, Chaulagain U, Goncalves LVN, Grenfell A, Lamač M, Lorenz S, Nevrkla M, Špaček A, Šobr V, Szuba W, Bakule P, Korn G, Bulanov SV. Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser. Physics of Plasmas. 2024;31(4):043106. doi: 10.1063/5.0189051
- Ebel K, Bald I. Low-energy (5–20 eV) electron-induced single and double strand breaks in well-defined DNA sequences. Journal of Physical Chemistry Letters. 2022;13(22):4871–4876. doi: 10.1021/acs.jpclett.2c00684
- Frankl M, Macián-Juan R. Monte Carlo simulation of secondary radiation exposure from high-energy photon therapy using an anthropomorphic phantom. Radiation Protection Dosimetry. 2016;168(4):537–545. doi: 10.1093/rpd/ncv381
- Romano F, Bailat C, Jorge PG, Lerch MLF, Darafsheh A. Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Medical Physics. 2022;49(7):4912–4932. doi: 10.1002/mp.15649
- Winterhalter C, Lomax A, Oxley D, Weber DC, Safai S. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Physics in Medicine and Biology. 2018;63(2):025022. doi: 10.1088/1361-6560/aaa2ad
- Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, Kodaira S, Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. Journal of Radiation Research. 2022;63(2):255–260. doi: 10.1093/jrr/rrab114
Дополнительные файлы

