ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ УСТОЙЧИВОСТИ ЛИНЕЙЧАТЫХ ГЕЛИКОИДАЛЬНЫХ ОБОЛОЧЕК
- Авторы: Жильулбе М.1, Маркович А.С.1, Тупикова Е.М.1, Журбин Ю.В.1
-
Учреждения:
- Российский университет дружбы народов (РУДН)
- Выпуск: Том 19, № 2 (2018)
- Страницы: 203-213
- Раздел: Архитектура и строительные науки
- URL: https://journals.rcsi.science/2312-8143/article/view/335264
- DOI: https://doi.org/10.22363/2312-8143-2018-19-2-203-213
- ID: 335264
Цитировать
Полный текст
Аннотация
Рассматривается устойчивость оболочек в форме прямых геликоидов. Анализ устойчивости выполнялся на основе компьютерных моделей четырех оболочек одинаковой высоты с равными длинами образующих, но с различным числом свободных витков. Для расчета использовались треугольные оболочечные конечные элементы. Общее количество узловых неизвестных было одинаковым в каждой из рассматриваемых задач и составляло 16 206. Численное исследование устойчивости выполнялось методом конечных элементов в программном комплексе Lira-Sapr 2017. Расчет устойчивости оболочек производился на комбинацию нагрузок, включающую в себя собственный вес с коэффициентом надежности 1,1 и поперечную равномерную нагрузку в проекции на горизонтальную поверхность интенсивностью 0,2 т/ м1 с коэффициентом надежности 1,2. Граничные условия: упругое защемление оболочек вдоль нижней и верхней образующих. Для построения срединной поверхности каждой оболочки использовались параметрические уравнения в прямоугольных координатах. Определенный интерес представляет исследование собственных колебаний рассматриваемых оболочек. При нахождении частот и форм свободных колебаний учитывался только собственный вес геликоидальных оболочек.
Об авторах
Матье Жильулбе
Российский университет дружбы народов (РУДН)
Автор, ответственный за переписку.
Email: giloulbem@hotmail.com
кандидат технических наук, доцент департамента архитектуры и строительства Инженерной академии, Российский университет дружбы народов. Область научных интересов: теория тонких упругих оболочек, нелинейная устойчивость оболочек сложной геометрии, компьютерное моделирование
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, 6Алексей Семенович Маркович
Российский университет дружбы народов (РУДН)
Email: markovich.rudn@gmail.com
кандидат технических наук, доцент департамента архитектуры и строительства Инженерной академии, Российский университет дружбы народов. Область научных интересов: строительная механика, численные методы расчета сооружений, компьютерное моделирование
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, 6Евгения Михайловна Тупикова
Российский университет дружбы народов (РУДН)
Email: tupikova_em@rudn.university
кандидат технических наук, ассистент департамента архитектуры и строительства Инженерной академии, Российский университет дружбы народов. Область научных интересов: теория тонких упругих оболочек, нелинейная устойчивость оболочек сложной геометрии, компьютерное моделирование
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, 6Юлиан Викторович Журбин
Российский университет дружбы народов (РУДН)
Email: julianzhurbin2015@gmail.com
магистрант департамента архитектуры и строительства Инженерной академии, Российский университет дружбы народов. Область научных интересов: компьютерное моделирование, расчеты строительных конструкций, зданий, сооружений и комплексов
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, 6Список литературы
- Krivoshapko S.N., Ivanov V.N. Encyclopedia of analytic surfaces. Moscow: LIBROKOM, 2010. 560 p. (In Russ.)
- Aleksandrov P.V., Nemirovsky Yu.V. Investigation of the stressed state of reinforced helicoidal shells. Izvestiya Vuzov. Building. 1994. No. 11. P. 48—55. (In Russ.)
- Aleksandrov P.V., Nemirovsky Yu.V. Stress state of reinforced helicoidal shells. Izvestiya Vuzov. Construction and architecture. 1991. No. 9. P. 18—24. (In Russ.)
- Czaplinski K., Marcinkowski Z., Swiecicki W. An analysis of stress in the combined structure of a spiral stairway // Eighth Cong. Mater. Fest. Budapest. 28 Sept.-1 Oct. 198. Lectures. Vol. 3. Budapest. 1982. 1003—1007.
- Nedelchev V.V. Vita of the Plateau of the Stlba, Statically Podpryana in the Edge of Edge. Building. 1989. T. 36. № 5. P. 3—4. (Bulgarian).
- Birger I.A. Spatial stress state in blades with initial twist // Tr. CIAM. 1982. No. 996. Pp. 7—23. (In Russ.)
- Shorr B.F. Oscillations of swirling rods. Izv. AS USSR. Mechanics and machine building. 1961. No. 3. P. 35—39. (In Russ.)
- Simmonds James G. General helicoidal shells undergoing large, one-dimensional strains or large inextentional deformations. Int. J. Solids and Struct. 1984. Vol. 20. No. 1. P. 13—30.
- Simmonds James G. Surfaces with metric and curvature tensors that depend on one coordinate only are general helicoids. Q. Appl. Math. 1979. Vol. 37. Р. 82—85.
- Salman Abdallah A. Al-Duhheisat.Analytical and numerical approaches to the problem of static calculation of a thin helical shell with unfolding middle surface / Reconstruction of buildings and structures. Strengthening the foundations and foundations: Int. scientific and practical work. Conf. Penza: PGAASA. PVZ. 1999. P. 67—70. (In Russ.)
- Krivoshapko S.N., Abdelsalam M.A. Methods analysis of helical shells in the form of torsohelicoids / Modern construction: Int. scientific — practical conference. Penza: PGAASA, PDZ, 1998. P. 105—107. (In Russ.)
- Krivoshapko S.N. Application of the asymptotic method of small parameter for the analytical calculation of thin elastic torso-helicoids // Spatial structures of buildings and structures. Moscow: OOO “Nine Print” Publ., 2004. Issue. 9. P. 36—44. (In Russ.)
- Mansfield E. On finite inextentional deformation of a helical strip. Int. J. Non-linear Mech. 1980. Vol. 15. No. 6. Р. 459—467.
- Meerson B. Theoretical study of the stress-strain state of the helical shell. Ufim. aviats. in-t, Ufa, 1988. 22 s., ill. Bibl. 6 names. (Manuscript of the Depot in VINITI on 12.07.88., No. 5593-B88). (In Russ.)
- Salman Abdallah A. al-Duhheisat.Analytical and numerical approaches to the problem of static calculation of a thin helical shell with an unfolding middle surface // Reconstruction of buildings and structures. Strengthening the foundations and foundations: Int. scientific and practical work. Conf. Penza: PGAASA, PDZ, 1999. P. 67—70. (In Russ.)
- Rynkovskaya M.I. Bending and the problem of calculating thin elastic shells in the form of a straight and unfolding helicoid on the distributed load and the draft of one of the curvilinear supports: diss. thesis. Moscow, 2013. 217 p. (In Russ.)
- Mansfield E. On the finite non-uniform deformation of a spiral band. Int. J. Nonlinear fur. 1980. Vol. 15. No. 6. P. 459—467. (In Russ.)
Дополнительные файлы

