Angular Stabilization of a Multirotor Aircraft in Venus’ Atmosphere
- Autores: Ryzhkov V.V.1
-
Afiliações:
- Moscow Aviation Institute (National Research University)
- Edição: Volume 26, Nº 2 (2025)
- Páginas: 135-143
- Seção: Articles
- URL: https://journals.rcsi.science/2312-8143/article/view/327611
- DOI: https://doi.org/10.22363/2312-8143-2025-26-2-135-143
- EDN: https://elibrary.ru/LJDNQI
- ID: 327611
Citar
Texto integral
Resumo
The study addresses the problem of attitude stabilization of a multirotor aircraft (MRAC) designed for exploring the atmosphere of Venus. The relevance of this topic is driven by the need to obtain detailed data on the lower layers of Venus’ atmosphere, which is crucial for understanding climate processes in the Solar System as a whole. The objective of the study is to develop a control system based on a proportional-integral-derivative controller to ensure stability and maneuverability of the MRAC under turbulent atmospheric conditions on Venus. The research includes mathematical modeling of the angular motion of the MRAC, taking into account aerodynamic forces and wind disturbances. A PID controller is used for attitude stabilization, with its parameters optimized using the Nelder-Mead method in combination with numerical integration of the equations of motion. As a result, a system of differential equations describing the angular dynamics of the MRLA has been developed. An automated tuning approach for the controller coefficients is implemented to minimize orientation deviations under random wind disturbances. Numerical simulations confirm the effectiveness of the proposed stabilization algorithm. The suggested approach to automated PID parameter tuning minimizes the integral orientation error and improves the dynamic performance of the multirotor flight control system. The developed stabilization algorithm can be applied to aerial vehicles operating in complex atmospheric conditions, including strong disturbances typical of the Venus cloud layer.
Sobre autores
Vladislav Ryzhkov
Moscow Aviation Institute (National Research University)
Autor responsável pela correspondência
Email: dinozavr.ru@mail.ru
ORCID ID: 0009-0008-2756-8479
Código SPIN: 2911-4515
postgraduate student of the of the Department 604 “System Analysis and Control”
4 Volokolamsk highway, Moscow, 125993, Russian FederationBibliografia
- Moroz VI. The atmosphere of Venus. Soviet Physics Uspekhi. 1971;14(3):317. https://doi.org/10.1070/PU1971v014n03ABEH004705
- Kliore AJ, Moroz VI, Keating GM. The Venus International Reference Atmosphere. Advances in Space Research. 1985;5(11):1–2. https://doi.org/10.1016/0273-1177(85)90196-6
- Yatsenko MYu, Vorontsov VA, Ryzhkov VV. Re-view of problematic issues in creation of a multirotor aircraft for Venus exploration. Engineering Journal: Science and Innovation. 2023;(2):8. (In Russ.) https://doi.org/10.18698/2308-6033-2023-2-2255 EDN: YFMKKG
- Yatsenko MYu, Vorontsov VA, Ryzhkov VV. Sys-tems engineering study of a multirotor aircraft as a pro-mising tool for studying the atmosphere and surface of Venus. Spacecraft and Technologies. 2023;7(3):220–226. (In Russ.) https://doi.org/10.26732/j.st.2023.3.06 EDN: UNAKMH
- Denisenko VV. PID regulators: principles of con-struction and modifications. Systems and Automation Devices. 2006;(4):66–74. (In Russ.) Available from: https://www.cta.ru/cms/f/342946.pdf (accessed: 12.11.2024)
- Liu F. Comparative analysis of PID controller tuning methods. Scientific Researches. 2023;23–26. (In Russ.) Available from: http://earchive.tpu.ru/handle/11683/51524 (accessed: 12.11.2024)
- Lobaty AA, Gu P. Mathematical modeling of move-ment of multi-rotor type aircraft. System analysis and appliied information science. 2023;(1):10–15. (In Russ.) https://doi.org/10.21122/2309-4923-2023-1-10-15 EDN: KFOYKO
- Sablina GV, Markova VA. Tuning of PID controller parameters in a system with a second-order object with delay. Avtometriya. 2022;58(4):110–117. (In Russ.) https://doi.org/10.15372/AUT20220411 EDN: RIZPWY
- Byushgens GS, Studnev RV. Dynamics of the Aircraft. Spatial Movement. Moscow: Mashinostroenie Publ.; 1983. (In Russ.)
- Aslanov VS, Ledkov A. Attitude dynamics and control of space debris during ion beam transportation. Amsterdam: Elsevier Publ.; 2023. 312 p. ISBN 978-0-32399-299-2 ISBN 978-0-32399-300-5
- Ivanov AM, Belyaev FS, Volkov AE, Belyaev SP, Resnina NN. Application of the Nelder-Mead method for optimizing the selection of constants of the Likhachev-Volkov model. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 2022;9(4):693–704. (In Russ.) https://doi.org/10.21638/spbu01.2022.411 EDN: TMNRBL
- Balakin VL, Krikunov MM. Disturbed motion of a hypersonic vehicle in climb. Vestnik of Samara Univer-sity. Aerospace and Mechanical Engineering. 2019;18(2):7–20. (In Russ.) https://doi.org/10.18287/2541-7533-2019-18-2-7-20 EDN: YOTZWJ
- Kovtunenko VM, Kameko VF, Yaskevich EP. Aerodynamics of orbital spacecraft. Kiev: Naukova Dumka; 1977. (In Russ.)
- Ledkov A.S. Dynamics and control of cylindrical space debris during contactless ion beam assisted transportation. Trudy MAI. 2023;(131):4. https://doi.org/10.34759/trd-2023-131-04 (In Russ.) EDN: XUITIS
- Nunez-Iglesias H, van der Walt S, Dashnoi H. Elegant SciPy: Scientific Programming in Python. Moscow: DMK Press; 2018. (In Russ.) ISBN 978-5-97060-600-1
- Hill K. Scientific Programming in Python. Translated from English by A.V. Slastin. Moscow: DMK Press; 2021. (In Russ.) ISBN 978-5-97060-914-9
- Lobanovich B. Simple Python: Modern Programming Style. 2nd ed. Saint Petersburg: Piter Publ.; 2021. (In Russ.) ISBN 978-5-4461-1639-3
- Voronov AA. Introduction to the Dynamics of Complex Controlled Systems. Moscow: Nauka Publ.; 1985. (In Russ.) Available from: https://reallib.org/reader?file=1212928&pg=3 (accessed: 21.11.2024).
- Taddia Y, Stecchi F, Pellegrinelli A. Use of the DJI Phantom 4 RTK unmanned aerial vehicle for topographic mapping of coastal areas. International Archives of Photogrammetry, Remote Sensing and Spatial Infor-mation Sciences. 2019;XLII-2/W13:625–630. https://doi.org/10.5194/isprs-archives-XLII-2-W13-625-2019
Arquivos suplementares
