Том 26, № 2 (2025)

Бүкіл шығарылым

Articles

Modified Algorithm for Calculating the Parameters of Maneuvers of Coplanar Meeting of Spacecraft in a Near-Circular Orbit Using Low-Thrust Engines

Baranov A., Olivio A.

Аннотация

A modified algorithm is presented for solving the problem of spacecraft rendezvous in a near-circular orbit. The study considers the calculation of maneuver parameters executed on several turns using a low-thrust propulsion system. It is assumed that the active spacecraft performs maneuvers within a predefined region around the target spacecraft, while the perturbative effects of Earth’s gravitational field non-centrality and atmospheric drag are neglected. Well-established approximate mathematical models of spacecraft motion are employed to address the rendezvous problem. The methodology of determining the parameters of maneuvers is structured into three key stages: in the first and third stages, the parameters of impulsive transfer and low-thrust transfer are determined using analytical methods. In the second stage, maneuvers are allocated across the available turns to ensure a successful rendezvous by minimizing a selected control variable. The proposed approach is distinguished by its computational efficiency and robustness, making it suitable for onboard implementation in autonomous spacecraft navigation systems. As a case study, the paper analyzes the dependence of total characteristic velocity required for rendezvous on the magnitude of engine thrust and provides a comparative assessment of the total characteristic velocity for both impulsive and low-thrust maneuvering scenarios.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):113-126
pages 113-126 views

Analytical Review of the Common Failures of Satellite Structures: Causes, Effects, and Mitigation Strategies

Reza Kashyzadeh K., Kupreev S., Samusenko O.

Аннотация

Satellite structures are subjected to extreme conditions throughout their operational lifespan, including high launch loads, thermal cycling, and space debris impacts, making them vulnerable to structural failures. Understanding the causes, effects, and mitigation strategies for such failures is crucial for enhancing satellite reliability and mission success. This review critically examines the common structural failures in satellites, categorizing them by affected components such as primary frames, joints, thermal shielding, and deployable mechanisms. The study employs a comprehensive analysis of historical and recent failures, integrating insights from case studies, experimental research, and advancements in materials science and structural health monitoring. The findings highlight key failure mechanisms, including material fatigue, vibrational stresses, and thermal degradation, and assess innovative solutions such as smart materials and in-orbit repair techniques. By synthesizing current research and industry practices, this review provides a systematic understanding of failure trends and proposes future directions for improving satellite structural resilience. The insights presented in this study aim to support the development of more robust satellite architectures, ultimately contributing to safer and more reliable space missions.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):127-134
pages 127-134 views

Angular Stabilization of a Multirotor Aircraft in Venus’ Atmosphere

Ryzhkov V.

Аннотация

The study addresses the problem of attitude stabilization of a multirotor aircraft (MRAC) designed for exploring the atmosphere of Venus. The relevance of this topic is driven by the need to obtain detailed data on the lower layers of Venus’ atmosphere, which is crucial for understanding climate processes in the Solar System as a whole. The objective of the study is to develop a control system based on a proportional-integral-derivative controller to ensure stability and maneuverability of the MRAC under turbulent atmospheric conditions on Venus. The research includes mathematical modeling of the angular motion of the MRAC, taking into account aerodynamic forces and wind disturbances. A PID controller is used for attitude stabilization, with its parameters optimized using the Nelder-Mead method in combination with numerical integration of the equations of motion. As a result, a system of differential equations describing the angular dynamics of the MRLA has been developed. An automated tuning approach for the controller coefficients is implemented to minimize orientation deviations under random wind disturbances. Numerical simulations confirm the effectiveness of the proposed stabilization algorithm. The suggested approach to automated PID parameter tuning minimizes the integral orientation error and improves the dynamic performance of the multirotor flight control system. The developed stabilization algorithm can be applied to aerial vehicles operating in complex atmospheric conditions, including strong disturbances typical of the Venus cloud layer.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):135-143
pages 135-143 views

General Mathematical Principles for Determining the Engineering Concept of Apartment Buildings Based on Expert Analytical Methods and Decision Support Systems

Merkulov A., Stepanyan I.

Аннотация

A well-designed engineering blueprint for a residential apartment building can effectively mitigate potential hazards during the preparatory phase of construction. This approach enables the consideration of factors that, due to the constraints inherent in specialized expertise, frequently go unaddressed in practice. The theory of expert systems and mathematical apparatus based on fuzzy logic are put forward as the methodological basis and fundamental research methods. The objective of the present study is to formulate mathematical principles that facilitate the determination of the engineering concept of apartment buildings at the preparatory stage of construction, based on the theory of fuzzy sets and decision support methods. The research objective is to develop general mathematical principles for solving applied problems using specialized expert systems. The research yielded the development of the mathematical foundations of a multifunctional expert system for the conceptualization of apartment buildings during the preparatory phase of construction; a fuzzy knowledge base was created. The projection of a multidimensional response surface function has been restored, reflecting the dependence of linguistic variables. Mathematical principles for determining the engineering concept of multi-family residential buildings at the preparatory stage of construction have been developed.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):144-154
pages 144-154 views

Ensuring the Survivability of a Complex Technical System Under Special Conditions

Alekseev V., Ivanov D., Ryzhov I.

Аннотация

The objective of the research presented in this article was to develop an algorithm for ensuring the survivability of a complex technical system under special conditions. The principles and methods of system analysis, formal verification and mathematical apparatus of temporal logic of actions were applied in the research. As a result of the study, an algorithm for searching logical errors in the design solution and software of a complex technical system based on temporal logic was developed. The distinguishing features of the algorithm include the capacity for formal verification of the design solution within the system and the incorporation of a mechanism to ensure the consistency of the design solution and implementation. The application of this algorithm is recommended for the assurance of survivability, encompassing both newly developed systems during the design and commissioning stages, and existing systems during the maintenance stage.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):155-167
pages 155-167 views

Machine Learning Methods for Predicting Cardiovascular Diseases: A Comparative Analysis

Temirbayeva A., Altybay A.

Аннотация

The study aims to accurately predict the presence of heart disease using machine learning models. The research evaluates and compares the performance of five algorithms - Logistic Regression, Support Vector Machine (SVM), Decision Tree, Random Forest, and Gradient Boosting - on a dataset containing clinical features of patients. The primary research question is to identify which algorithm demonstrates the best predictive performance for heart disease diagnosis. The study used a dataset of 270 patients with 13 clinical features. The data was preprocessed, and target variables were converted into binary values for classification. The dataset was split into training and test sets in a 70-30 ratio. Five machine learning models were trained and evaluated using metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Confusion matrices were analyzed to gain additional insights into model performance. Logistic Regression and Random Forest showed the best results among all models, with an accuracy of 86.4 and 80.2%, respectively. The Logistic Regression showed a ROC-AUC score of 0.844, while the Random Forest showed a score of 0.88. The confusion matrices revealed the strengths and weaknesses of each model in terms of forecasting. Logistic Regression and Random Forest were identified as the most reliable models for predicting heart disease in this dataset. Future work will explore hyperparameter tuning and ensemble methods to further enhance model performance, providing valuable insights for early diagnosis and treatment of cardiovascular diseases.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):168-180
pages 168-180 views

Development of an Energy Complex of Wind Farms and Thermal Power Plants in China

Zhu Q., Sigitov O.

Аннотация

China is undergoing a transformation of its energy system to meet the goals of pollutant reduction and carbon neutrality. The integration of renewable energy sources into the existing energy system is a subject of considerable relevance. The initial phase of the study involved the development of a map showing potential sites for wind farms. Consequently, the locations exhibiting the highest and lowest levels of wind energy potential were identified. The second part of the study is based on an analysis of the current status of China’s energy system and wind energy potential. It considers a model of an integrated energy complex combining wind farms and coal-fired thermal power plants. In order to develop such complex systems, it is necessary to consider the unstable operation modes of wind farms, in order to ensure that maximum energy consumption is covered. The findings of the study demonstrate that such a complex can play a significant role in optimizing the power structure, improving grid stability and reducing pollutant emissions, providing an effective solution for China’s energy strategy.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):181-193
pages 181-193 views

The Energy Complex of Wind and Thermal Power Plants: Development in Iraq

Osamah A., Sigitov O.

Аннотация

The power system of Iraq aims to integrate all energy sources such as thermal power plants and renewable energy sources including wind energy. Wind speed data for 2022 in five locations were obtaied to calculate the wind energy potential of Iraq in the first part of the study. The selected locations were used to plot the graph of the regional distribution of average wind speed in Iraq. Four regions were identified according to the level of wind energy potential. Statistical analysis including wind flow power calculation was performed for each location. The second part of the study considered an energy complex including wind power plants and natural gas-fired thermal power plants. To develop such a complex, it is necessary that the maximum energy consumption is covered taking into account the unstable operating modes of wind power plants. The results show the technical feasibility in terms of flexibility and cost-effectiveness of such an energy complex.

Bulletin of Peoples' Friendship University of Russia. Series Engineering researches. 2025;26(2):194-204
pages 194-204 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».