Optimizing MEMS-based navigation sensors for aerospace vehicles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

This comprehensive study delves deeply into the intricate domain of optimizing Micro-electromechanical Systems (MEMS)-based navigation sensors for aerospace vehicles. It entails a meticulous examination of MEMS sensors, focusing on their role in guidance, navigation, and control, with particular emphasis on MEMS inertial sensors and crucial performance metrics. The study investigates a spectrum of techniques for sensor optimization, including strategies for enhancing fabrication and production through smart structures and mathematical modeling. Additionally, it explores methodologies and mechanisms for improving navigation sensor fabrication, along with the incorporation of optimizer techniques to manage computational complexities effectively. The key findings underscore the challenges tied to material selection and structural intricacies in optimizing these sensors for aerospace applications. Integration of sensors into integrated circuits, development of advanced mathematical models, and harmonization with artificial intelligence algorithms are vital for boosting sensor performance, while calibration and error mitigation during user deployment are essential. Furthermore, the study underscores the imperative for addressing limitations in sensor accuracy and precision through refined calibration mechanisms and error correction processes. The trajectory for future research involves advancing material selection, mathematical models, and innovative calibration techniques to comprehensively enhance sensor performance and reliability in aerospace applications.

Авторлар туралы

Ali Alizadeh

RUDN University; K.N. Toosi University of Technology

Хат алмасуға жауапты Автор.
Email: ali.rim.alizadeh@gmail.com
ORCID iD: 0009-0006-0673-1893
SPIN-код: 1755-9674

M.S Student of Control in Technical Systems-Space Engineering of the Department of Mechanics and Control Processes, Academy of Engineering, RUDN University; M.S Student of Space Engineering, Faculty of Aerospace Engineering, K.N. Toosi University of Technology

Moscow, Russia; Tehran, Iran

Olga Saltykova

RUDN University

Email: saltykova-oa@rudn.ru
ORCID iD: 0000-0002-3880-6662
SPIN-код: 3969-6707

Ph.D. of Physico-mathematical Sciences, Associate Professor of the Department of Mechanics and Control Processes, Academy of Engineering

Moscow, Russia

Alireza Novinzadeh

K.N. Toosi University of Technology

Email: novinzadeh@kntu.ac.ir
Ph.D. of Space Engineering, Associate Professor and Head of the Department of Space Engineering, Faculty of Aerospace Engineering Tehran, Iran

Әдебиет тізімі

  1. Zukersteinova A. Skill Needs in Emerging Technologies: Nanotechnology. Cedefop; 2007.
  2. Salomon P. MEMS - Recent Developments, Future Directions.
  3. Litman K. Static and dynamic assessment of the accuracy and precision of FOUR SHIMMER 2r microelectronic measuring systems (MEMS). 2015.
  4. Osiander R, Champion J, Darrin MAG. MEMS and Microstructures in Aerospace Applications. Taylor & Francis; 2006.
  5. Gaura E, Newman R, Kraft M, Flewitt A. Smart MEMS and sensor systems. Imperial College Press (ICP); 2006.
  6. Janson SW. Aerospace applications of MEMS. In: MEMS/MOEMS Components and Their Applications II. Vol. 5717. SPIE; 2005:1. https://doi.org/10.1117/12.601836
  7. Ko WH. Trends and frontiers of MEMS. Sens Actuators A Phys. 2007;136(1):62-67. https://doi.org/10.1016/j.sna.2007.02.001
  8. Liddle JD, Holt AP, Jason SJ, O’Donnell KA, Stevens EJ. Space science with CubeSats and nanosatellites. Nat Astron. 2020;4(11):1026-1030. https://doi.org/10.1038/S41550-020-01247-2
  9. Winkler S, Buschmann M, Kruger L, Schulz HW, Vorsmann P. Multiple Sensor Fusion for Autonomous Mini and Micro Aerial Vehicle Navigation. 2007.
  10. Wilson WC, Atkinson GM, Barclay RO. NASA NDE Applications for Mobile MEMS Devices and Sensors.
  11. Barhoum A, Altintas Z. Advanced Sensor Technology_ Biomedical, Environmental, and Construction Applications-Elsevier (2022). Published online 2022.
  12. PHM Society, American Industrial Arts Association, Institute of Electrical and Electronics Engineers. 2014 IEEE Aerospace Conference: Yellowstone Conference Center, Big Sky, Montana, March 1-8, 2014. 2014.
  13. Bittner DE. Advances in MEMS IMU Cluster Technology for Small Satellite Advances in MEMS IMU Cluster Technology for Small Satellite Applications Applications. 2015. https://researchrepository.wvu.edu/etd
  14. Setter N. Electroceramic-Based MEMS: Fabrication-Technology and Applications (Electronic Materials: Science & Technology). 2005.
  15. IEEE Electron Devices Society. The 15th International Conference on Solid-State Sensors, Actuators & Microsystems : Transducers 2009 : Denver, Colorado, U.S.A., June 21-25, 2009, Sheraton Denver Hotel. IEEE Electron Devices Society; 2009.
  16. Iniewski K, Ricketts D, Ham D, Morris J, Iannone E. Fundamental Technology and Applications. 2013.
  17. Shi LF, Liu H, Liu GX, Zheng F. Body Topology Recognition and Gait Detection Algorithms with Nine-Axial IMMU. IEEE Trans Instrum Meas. 2020; 69(3):721-728. doi: 10.1109/TIM.2019.2906969
  18. Shi LF, Zhao Y Le, Liu GX, Chen S, Wang Y, Shi YF. A Robust Pedestrian Dead Reckoning System Using Low-Cost Magnetic and Inertial Sensors. IEEE Trans Instrum Meas. 2019;68(8):2996-3003. https://doi.org/10.1109/TIM.2018.2869262
  19. Cao Z, Hu L, Yi G, Wang Z. Arm Motion Capture and Recognition Algorithm Based on MEMS Sensor Networks and KPA. In: 2021 International Conference on Electronic Information Engineering and Computer Science, EIECS 2021. Institute of Electrical and Electronics Engineers Inc.; 2021:133-139. https://doi.org/10.1109/EIECS53707.2021.9588046
  20. Institute of Electrical and Electronics Engineers, et al. The 2nd IEEE International Symposium on Inertial Sensors and Systems IEEE ISISS 2015: March 23-26, Hawaii, USA; 2015.
  21. Leclerc J. MEMs for Aerospace Navigation. IEEE Aerospace and Electronic Systems Magazine. 2007;22(10): 31-36. https://doi.org/10.1109/MAES.2007.4385708
  22. Capriglione D, Carratù M, Pietrosanto A, Sommella P, Catelani M, Signorini L. Characterization of Inertial Measurement Units under Environmental Stress Screening. IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 2020;1-6. https://doi.org/10.1109/I2MTC43012.2020.9129263
  23. Liu S, Liang H, Xiong B. An out-of-plane electromagnetic induction based resonant MEMS magnetometer. Sens Actuators A Phys. 2019;285:248-257. https://doi.org/10.1016/j.sna.2018.11.003
  24. Flatau AB, Chong KP. Dynamic Smart Material and Structural Systems. Engineering Structures. 2002;24(3): 261-270. https://doi.org/10.1016/S0141-0296(01)00093-1
  25. Fitzgerald AM, Fitzgerald AM. 45 MEMS Inertial Sensors.; 2021.
  26. Varadan VK, Vinoy KJ, Gopalakrishnan S. Smart Material Systems and MEMS: Design and Development Methodologies. Wiley; 2006.
  27. Barba PDi, Wiak S. MEMS: Field Models and Optimal Design. Lecture Notes in Electrical Engineering 573; 2020.
  28. Kraft M, White N (Neil M). MEMS for Automotive and Aerospace Applications. Vol. 556. (Nihtianov S, Luque A, eds.). Woodhead Publishing Limited; 2014.
  29. Ananthasuresh GK. Optimal Synthesis Methods for MEMS. Vol. 13. Springer US; 2003. https://doi.org/ 10.1007/978-1-4615-0487-0
  30. Azzerboni B, Asti G, Pareti L. Magnetic Nano-structures in Modern Technology. (Ghidini M, ed.). Springer-NATO Science for Peace and Security Series; 2006. http://www.nato.int/science
  31. Shuib S, Ridzwan MIZ, Kadarman AH. Methodology of compliant mechanisms and its current developments in applications: A review. Am J Appl Sci. 2007; 4(3):160-167. https://doi.org/10.3844/ajassp.2007.160.167
  32. Kal S., Das S. (2006). Development of silicon and quartz-based MEMS high precision accelerometers. Indian Journal of Pure & Applied Physics, 45, 299-303.
  33. Guo D, Wang J, Jia Z, Kang R, Gao H, Wang X. Advances in Materials Manufacturing Science and Technology XIII Volume II.; 2009.
  34. Domingue F, Fouladi S, Kouki AB, Mansour RR. Design methodology and optimization of distributed MEMS matching networks for low-microwave-frequency applications. IEEE Trans Microw Theory Tech. 2009; 57(12):3030-3041. https://doi.org/10.1109/TMTT.2009.2034218
  35. Krysko VA, Krysko AV, Saltykova OA, Papkova IV. Nonlinear Dynamics of Contact Interaction of MEMS Beam Elements Accounting the Euler-Bernoulli Hypothesis in A Temperature Field. 2017.
  36. Nguyen VK, Saltykova OA, Krysko AV. Investigation of nonlinear spatial oscillations of a MEMS beam. Computer science and information technology. Materials of the International Scientific Conference. Saratov: IC Nauka Publ.; 2016:286-288. (In Russ.) EDN: WFWNQV
  37. Shaeffer DK. MEMS Inertial Sensors: A Tutorial Overview. IEEE Communications Magazine. 2013;51(4): 100-109. https://doi.org/10.1109/MCOM.2013.6495768
  38. Khine L, Tsai JM. NEMS/MEMS Technology and Devices. Selected, peer reviewed papers from the International Conference on Materials for Advanced Technologies (ICMAT 2011), Symposium G: NEMS/ MEMS and microTAS, 26 June to 1 July 2011, Suntec, Singapore. 2011. https://doi.org/10.4028/b-3EnkIB
  39. Chen KS, Ou KS. MEMS residual stress characterization: Methodology and perspective. In: Handbook of Silicon Based MEMS Materials and Technologies. Elsevier; 2020:787-801. https://doi.org/10.1016/B978-0-12-817786-0.00039-6
  40. Johnson B, Albrecht C, Braman T, et al. Development of a Navigation-Grade MEMS IMU. In: INERTIAL 2021 - 8th IEEE International Symposium on Inertial Sensors and Systems, Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2021. https://doi.org/10.1109/INERTIAL51137.2021.9430466
  41. Zhao W, Cheng Y, Zhao S, et al. Navigation grade mems imu for a satellite. Micromachines (Basel). 2021;12(2):1-12. https://doi.org/10.3390/mi12020151
  42. Gill WA, Howard I, Mazhar I, McKee K. A Review of MEMS Vibrating Gyroscopes and Their Reliability Issues in Harsh Environments. Sensors. 2022; 22(19). https://doi.org/10.3390/s22197405
  43. Hajare R, Reddy V, Srikanth R. MEMS based sensors - A comprehensive review of commonly used fabrication techniques. In: Materials Today: Proceedings. Vol. 49. Elsevier Ltd; 2021:720-730. https://doi.org/10.1016/j.matpr.2021.05.223
  44. Goebel R, Tanaka Y, Wahlster W. Autonomous and Intelligent Systems. Third International Conference, AIS 2012, Aviero, Portugal, June 25-27, 2012, Proceedings. Springer Berlin Heidelberg; 2012;283. https://doi.org/10.1007/978-3-642-31368-4
  45. Kumar A, Pradeep B, Mallick K, Liu CM, Balas Editors VE. Studies in Computational Intelligence 903 Bio-Inspired Neurocomputing. http://www.springer.com/series/7092
  46. Carbonell JG, Siekmann J. Lecture Notes in Artificial Intelligence 3397 Subseries of Lecture Notes in Computer Science; 2004.
  47. Fontanella R, Accardo D, Caricati E, Cimmino S, Simone DDe. (2016). An Extensive Analysis for the Use of Back Propagation Neural Networks to Perform the Calibration of MEMS Gyro Bias Thermal Drift. IEEE, 1-9.
  48. Xing H, Hou B, Lin Z, Guo M. Modeling and compensation of random drift of MEMS gyroscopes based on least squares support vector machine optimized by chaotic particle swarm optimization. Sensors (Switzerland). 2017;17(10). https://doi.org/10.3390/s17102335
  49. Pertin O, Guha K, Jakšić O. Artificial intelligence-based optimization of a bimorph-segmented tapered piezoelectric mems energy harvester for multimode operation. Computation. 2021;9(8). https://doi.org/10.3390/computation9080084
  50. Calandra H, Gratton S, Riccietti E, Vasseur X. On a multilevel Levenberg-Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations. Optim Methods Softw. 2022;37(1):361-386. https://doi.org/10.1080/10556788.2020.1775828
  51. Yu H, Wilamowski BM. 2-2 Intelligent Systems; 2011.
  52. Abraham A. Meta learning evolutionary artificial neural networks. Neurocomputing. 2004;56(1-4):1-38. https://doi.org/10.1016/S0925-2312(03)00369-2
  53. Mohamad N, Zaini F, Johari A, Yassin IM, Zabidi A. Comparison between Levenberg-Marquardt and Scaled Conjugate Gradient Training Algorithms for Breast Cancer Diagnosis using MLP. 6th International Colloquium on Signal Processing & its Applications. Malacca, Malaysia, 2010:162-169. https://doi.org/10.1109/CSPA.2010.5545325
  54. Rahmani S, Amjady N. Enhanced goal attainment method for solving multi-objective security-constrained optimal power flow considering dynamic thermal rating of lines. Applied Soft Computing Journal. 2019;77:41-49. https://doi.org/10.1016/j.asoc.2019.01.014
  55. Sivanandam SN, Deepa SN. Introduction to Genetic Algorithms. Springer-Verlag Berlin, Heidelberg; 2008. https://doi.org/10.1007/978-3-540-73190-0
  56. Sastry K, Goldberg D, Kendall G. Genetic Algorithms: The Design of Innovation. In: Genetic Algorithms: The Design of Innovation. 2nd ed. Springer; 2010:97-125.
  57. Haupt RL, Haupt SE. Practical genetic algorithms second edition. 2nd ed. Wiley; 2004.
  58. Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl. 2021;80(5):8091-8126. https://doi.org/10.1007/s11042-020-10139-6
  59. Alam T, Qamar S, Benaida M. Genetic Algorithm: Reviews, Implementations, and Applications. International Journal of Engineering Pedagogy. 2020. https://doi.org/10.36227/techrxiv.12657173
  60. Regassa Hunde B, Debebe Woldeyohannes A. Future prospects of computer-aided design (CAD) - A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results in Engineering. 2022;14. https://doi.org/10.1016/j.rineng.2022.100478
  61. Koryagin S, Klachek P, Vasileva V. Development of bionic approaches in the microelectromechanical systems design based on cognitive knowledge bank. 2017 14th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Lviv, Ukraine, 2017:285-288. https://doi.org/10.1109/CADSM.2017.7916136
  62. Institute of Electrical and Electronics Engineers. NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 2018.
  63. Cong L, Yue S, Qin H, Li B, Yao J. Implementation of a MEMS-Based GNSS/INS Integrated Scheme Using Supported Vector Machine for Land Vehicle Navigation. IEEE Sens J. 2020;20(23):14423-14435. https://doi.org/10.1109/JSEN.2020.3007892

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».