Influence of the El Niño phenomena on the climate change of the Ecuadorian coast
- Autores: Campos Cedeno A.F.1, Mendoza Alava J.O.1, Sinichenko E.K2,3, Gritsuk I.I2,4
-
Afiliações:
- Universidad Técnica de Manabí
- Peoples’ Friendship University of Russia (RUDN University)
- Russian Academy of Sciences Water Problems Institute (IWP RAS)
- Moscow Automobile and Road Construction State Technical University (MADI)
- Edição: Volume 19, Nº 4 (2018)
- Páginas: 513-523
- Seção: Innovative use of mineral resources
- URL: https://journals.rcsi.science/2312-8143/article/view/335291
- DOI: https://doi.org/10.22363/2312-8143-2018-19-4-513-523
- ID: 335291
Citar
Texto integral
Resumo
The climate on the Ecuadorian coast depends mainly on the marine currents of Humboldt and El Niño, which appear in the dry and rainy seasons, respectively. The Humboldt current is distinguished by being cold, while that of El Niño is hot. The presence of the El Niño current causes an increase in the evaporation of ocean waters with the consequent appearance of the rainy season. There are anomalous seasons of the El Niño stream, when the water temperature rises above the norm, higher than 25.5 °C, which has been called El Niño phenomena. The appearance of this natural phenomena has proven to be decisive in the climate change of the coast of Ecuador. In order to have technical information, important for the planning, control and development of the water resources of the DHM, in this research a temporal analysis of the monthly rainfall during 55 years, 1963-2017 period, is carried out. The National Institute of Hydrology and Meteorology of Ecuador (Instituto National de Meteorología e Hidrología - INAMHI) at station M005, located in the Botanical Garden of the Technical University of Manabí in Portoviejo, obtained these records. An analysis of the monthly and annual patterns is made, establishing that the El Niño events occurred in 1983, 1997 and 1998, have established guidelines for the change in the production of rainwater in the levels of intensity and temporal distribution, increasing the months of drought, while precipitation levels increase, concentrating in fewer months, basically in February and March. This is a situation that increases the water deficit, especially when there is not enough infrastructure of hydraulic works for the storage and regulation of runoff.
Palavras-chave
Sobre autores
Antonio Campos Cedeno
Universidad Técnica de Manabí
Autor responsável pela correspondência
Email: acampos@utm.edu.ec
Ph.D., Associate Professor
Avenida Urbina y Che Guevara, Portoviejo, Ecuador, 130105Junior Mendoza Alava
Universidad Técnica de Manabí
Email: jmendoza7865@utm.edu.ec
Associate Professor
Avenida Urbina y Che Guevara, Portoviejo, Ecuador, 130105Evgenii Sinichenko
Peoples’ Friendship University of Russia (RUDN University); Russian Academy of Sciences Water Problems Institute (IWP RAS)
Email: sinichenko_ek@pfur.ru
Ph.D., Associate Professor of the Construction Department, Engineering Academy
6 Mikluho-Maklaya St., Moscow, 117198, Russian FederationIlia Gritsuk
Peoples’ Friendship University of Russia (RUDN University); Moscow Automobile and Road Construction State Technical University (MADI)
Email: gritsuk_ii@pfur.ru
Ph.D., Associate Professor of the Construction Department, Engineering Academy, Peoples’ Friendship University of Russia (RUDN University). Senior researcher of laboratory “Channel flow dynamics and ice thermal conditions”, Russian academy of Sciences Water Problems Institute. Associate Professor of the Hydraulic Department, Moscow Automobile and Road Construction State Technical University
6 Mikluho-Maklaya St., Moscow, 117198, Russian Federation; 3 Gubkina St., Moscow, 119333, Russian Federation; 64 Leningradsky Prospect, Moscow, 125319, Russian FederationBibliografia
- Campos A. F., Sinichenko E. K. Características de Sistemas Fluviales Pequeños y Recursos Hídricos de la Demarcación Hidrográfica de Manabí, Perspectivas de Desarrollo. Moscú: Universidad de la Amistad de los Pueblos de Rusia, 2017, 42-45.
- Ismaiylov G. J., Perminov A. V. Balance Hídrico Mundial y Recursos Hídricos de la Tierra, Catastro del Agua y Supervisión de los Elementos Hídricos. Moscú: FGBOU MGUP, 2013, 324.
- Valinova V.S. Coeficiente de variación y coeficiente de determinación. 2016. Access mode: http:// univer-nn.ru/statistika/koefficient-variacii/
- Plan Integral de Desarrollo de los Recursos Hídricos de la Provincia de Manabí (PHIMA). Centro de Rehabilitación de Manabí. Manabi - Ecuador, 1989.
- Chereque Morán W. Hidrología para estudiantes de ingeniería civil. Lima, 1989, 236.
- Comisión Mixta de Cooperación Amazónica - Ecuatoriano - Colombiana. Plan de Ordenamiento y Manejo de las Cuencas de los Ríos San Miguel y Putumayo. Washington, D.C.: Secretaria ejecutiva para asuntos económicos y sociales, 1987.
- Cuenca N. Gestion de Recursos Hídricos en el Ecuador. 2008. Access mode: http://memorias. utpl.edu.ec/sites/default/files/documentacion/periodismo2013/utpl-Gestion-Recursos- Hidricos-Ecuador.pdf
- Instituto Nacional de Hidrología y Meteorología. Anuarios Meteorológicos. Instituto Nacional de Hidrología y Meteorología. 2015. Access mode: http://186.42.174.231/index.php/clima/ anuarios-meteorologicos
- Instituto Nacional de Meteorología e Hidrología del Ecuador. Hidrologia y meteorología. Instituto Nacional de Meteorología e Hidrología del Ecuador. 2015. Access mode: http://www. serviciometeorologico.gob.ec/
- Gobierto Autónomo Descentralizado del Cantón Portoviejo. Plan de desarrollo y ordenamiento territorial del cantón Portoviejo. GAD Portoviejo, 2011, 7-12.
Arquivos suplementares

