Comparative analysis of the economic feasibility of using ultra-small spacecrafts

Capa

Citar

Texto integral

Resumo

The relevance of the issue under consideration is associated with the evolution of existing technologies, due to which the functionality increases and the mass of the payload decreases, as a result of which the question of the use of cost-effective launch vehicles is raised. The purpose of this work is to carry out a comparative analysis of the feasibility of using ultra-light launch vehicles to provide services for the delivery of small spacecraft to low-earth orbit. The article is written within the framework of socio-economic research methods. Retrospective analysis and comparative approach are combined with the use of quantitative methods. The theoretical significance of the study consists in the analysis of the modern operation of small spacecraft and the state of the world rocket and space industry, analysis of the existing strategy of the State Corporation «Roscosmos» in the development of a new line of reusable launch vehicles and consideration of promising projects of domestic private companies involved in the creation of ultra-light launch vehicles. The practical significance lies in the possibility of using the results of studying the intensity of space launches when making strategic decisions on the use of ultra-light launch vehicles. Based on the assessment of existing forecasts for the development and creation of small-sized spacecraft, it is concluded that the world space market is interested in the types of satellites and classes of launch vehicles for their launch.

Sobre autores

Yulia Nazarova

Peoples’ Friendship University of Russia (RUDN University)

Autor responsável pela correspondência
Email: nazarova-yua@rudn.ru
ORCID ID: 0000-0002-5017-0281

Associate Professor of the Department of Management of Innovation in the Engineering Business, Engineering Academу, RUDN University, Cand. of Sci. (Economic)

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vladimir Tikhonov

Peoples’ Friendship University of Russia (RUDN University)

Email: tihon_94@mail.ru

Student of the Department of Management of Innovation in the Engineering Business, Engineering Academу, RUDN University

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Bibliografia

  1. Kamalieva RN, Charkviani RV. Creation of ultralight spacecraft structures from composite materials. Procedia Engineering. 2017;185:90—197.
  2. Santoni F, Piergentili F, Candini GP, Perelli M, Negri A, Marino M. An orientable solar panel system for nanospacecraft. Acta Astronautica. 2014;101:120—128.
  3. Notaro V, Benedetto M, Colasurdo G, et al. A small spacecraft to probe the interior of the Jovian moon Europa: Europa Tomography Probe (ETP) system design. Acta Astronautica. 2020;166:137—146.
  4. Salmin VV, Tkachenko SI, Volocuev VV, Kaurov IV. Improving the efficiency of Earth monitoring missions by equipping small Aist-2 spacecraft with an electric motor. Procedia Engineering. 2017;185:198—204.
  5. Kang J, Zhu ZH. Dynamics and control of de-spinning giant asteroids by small tethered spacecraft. Aerospace Science and Technology. 2019: 94: 105394. https://doi.org/10.1016/j. ast.2019.105394
  6. Kozlov DI, Anshakov GP, Antonov Y G, Makarov VP, Somov DI. Precision Control Systems of Motion on Russian Spacecraft for Ecological Remote Sensing. IFAC Proceedings Volumes. 1998;31:27—38.
  7. Gadsvind IN. Small spacecraft – a new area of space activity. International research journal. 2018;12–2(78):84—91. (In Russ.)
  8. Felicetti L, Piergentili F, Santoni F. Thermosphere density and wind measurements in the equatorial region using a constellation of drag balance nanospacecraft. Advances in Space Research. 2014;54:546—553.
  9. Iakubivskyi I, Mačiulis L, Janhunen P, Dalbins J, Noorma M, Slavinskis A. Aspects of nanospacecraft design for main-belt sailing voyage. Advances in Space Research. 2020. https://doi.org/10.1016/j.asr.2020.07.023
  10. Grundmann JT, Bauer W, Biele J, et al. Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs. Acta Astronautica. 2019;156:330—362.
  11. Skvortsov YuV, Glushkov SV, Chernyakin SA. Space Factors Influence on the Size Stability of Small Spacecraft Structure Elements. Procedia Engineering. 2017;185:105–109.
  12. Klyushnikov VY, Kuznetsov II, Osadchenko AS. Methods for ensuring the fault tolerance of small spacecraft and ultralight means of launching them into orbit. 2nd scientific and technical conference with international participation “Innovative automatic spacecraft for fundamental and applied scientific research. Problems of creating service and scientific systems”. 2017:317—328. (In Russ.)
  13. Badawy A, McInnes CR. Small spacecraft formation using potential functions. Acta Astronautica. 2009;65:1783—1788.
  14. Rhatigan JL, Lan W. Drag-enhancing deorbit devices for spacecraft self-disposal: A review of progress and opportunities. Journal of Space Safety Engineering. 2020;7:340—344.
  15. Baranov AA, Grishko DA, Shcheglov GA, Sholmin AS, Stognii MV, Kamenev ND. Feasibility analysis of LEO and GEO large space debris de/re-orbiting taking into account launch mass of spacecraft-collector and its configuration layout. Advances in Space Research. 2021;67:371—383.
  16. Shamardina OV, Liskov KV, Glushko VO, Razumova YV, Vishtak KO, Zakirnichnaia EE. Development of small spacecraft and deorbiting systems: a review of market formation research. Bulletin of Eurasian science. 2019;1:45. (In Russ.)
  17. Studnikov PE. Features of deployment of an orbital grouping of small spacecraft. Innovation and investment. 2020;3:240—242. (In Russ.)
  18. Levandovich AV, Mosin DA, Severenko AV, Ertmincev IA. Method for determining the parameters of the corrective propulsion system for a small spacecraft. Proceedings of the military space Academy of A. F. Mozhaisky. 2018;611:176—184. (In Russ.)
  19. Nazarova YuA, Tikhonov VA. Prospects for the development and creation of ultralight launch vehicles. International Conference Engineering Systems – 2020. 2020:42—50. (In Russ.)
  20. Naumochkin DV, Petuhov AI, Poluian MM. Analysis of trends in the development of ultra-small spacecraft. Armament and economy. 2019;4(50):37—43. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».