Анализ применимости методов прогнозирования в системе выбора персонализированных предложений путем аналитического моделирования

Обложка

Цитировать

Полный текст

Аннотация

Актуальность исследования обоснована частым возникновением необходимости решения задач выбора персонализированных предложений в информационных системах и множеством возможных методов машинного обучения, среди которых необходимо выбрать наиболее подходящий. Цель данного исследования - моделирование системы выбора персонализированных предложений как системы массового обслуживания для оценки затрат на оборудование при использовании каждого из методов, необходимых для обслуживания требуемой доли заявок за заданный лимит времени. При этом решается задача оценки минимального количества обслуживающих устройств (серверов подбора), необходимых для обеспечения работы системы на заданном уровне. В работе показано, что систему можно описать многоканальной системой массового обслуживания без отказов. Произведен расчет функции распределения времени пребывания заявки в системе (время обслуживания плюс время ожидания в очереди), так как в литературе для подобных систем описана только функция распределения времени ожидания в очереди. Приведены преобразования выражения вероятности ожидания в системе, решающие проблему переполнения при программной реализации вычисления данного выражения. В заключительной части в качестве примера произведено моделирование системы по заданным параметрам, сделана оценка минимального количества обслуживающих устройств для обеспечения заданного времени ответа системы. По полученным данным можно принять решение о целесообразности применения того или иного метода прогнозирования частоты кликов пользователя или ранжирования.

Об авторах

Юрий Сергеевич Федоренко

Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: fedyura11235@mail.ru
SPIN-код: 1755-4017

соискатель, кафедра систем обработки информации и управления, факультет информатики и системы управления

Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1

Список литературы

  1. Fedorenko YS, Chernenkiy VM, Gapanyuk YE. The Neural Network for Online Learning Task Without Manual Feature Extraction. Advances in Neural Networks. 2019; 11554:67—77. http://dx.doi.org/10.1007/978-3-030-22796-8_8
  2. Tihonov VI, Mironov MA. Markovskie processy [Markov processes]. Moscow: Sovetskoe radio Publ.; 1977. (In Russ.)
  3. Fedorenko YS. The development of fast software implementation of specialized neural network architecture with sparse connections. Software & Systems. 2019;32(4):639—649. (In Russ.) http://dx.doi.org/ 10.15827/0236-235X.128.639-649
  4. Xinran H, Junfeng P, Ou J, Tianbing X, Bo L, Tao H et al. Practical Lessons from Predicting Clicks on Ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising. New York, USA: ACM Publ.; 2014. р. 1––9. http://dx.doi.org/10.1145/2648584.2648589

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».