Analytical Review of the Common Failures of Satellite Structures: Causes, Effects, and Mitigation Strategies
- Авторлар: Reza Kashyzadeh K.1, Kupreev S.A.1, Samusenko O.E.1
-
Мекемелер:
- RUDN University
- Шығарылым: Том 26, № 2 (2025)
- Беттер: 127-134
- Бөлім: Articles
- URL: https://journals.rcsi.science/2312-8143/article/view/327610
- DOI: https://doi.org/10.22363/2312-8143-2025-26-2-127-134
- EDN: https://elibrary.ru/LHUQMC
- ID: 327610
Дәйексөз келтіру
Толық мәтін
Аннотация
Satellite structures are subjected to extreme conditions throughout their operational lifespan, including high launch loads, thermal cycling, and space debris impacts, making them vulnerable to structural failures. Understanding the causes, effects, and mitigation strategies for such failures is crucial for enhancing satellite reliability and mission success. This review critically examines the common structural failures in satellites, categorizing them by affected components such as primary frames, joints, thermal shielding, and deployable mechanisms. The study employs a comprehensive analysis of historical and recent failures, integrating insights from case studies, experimental research, and advancements in materials science and structural health monitoring. The findings highlight key failure mechanisms, including material fatigue, vibrational stresses, and thermal degradation, and assess innovative solutions such as smart materials and in-orbit repair techniques. By synthesizing current research and industry practices, this review provides a systematic understanding of failure trends and proposes future directions for improving satellite structural resilience. The insights presented in this study aim to support the development of more robust satellite architectures, ultimately contributing to safer and more reliable space missions.
Авторлар туралы
Kazem Reza Kashyzadeh
RUDN University
Хат алмасуға жауапты Автор.
Email: reza-kashi-zade-ka@rudn.ru
ORCID iD: 0000-0003-0552-9950
Ph.D. in Technical Sciences, Professor of the Department of Transport Equipment and Technology, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationSergei Kupreev
RUDN University
Email: kupreev-sa@rudn.ru
ORCID iD: 0000-0002-8657-2282
SPIN-код: 2287-2902
Doctor of Sciences (Techn.), Professor of the Department of Mechanics and Control Processes, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationOleg Samusenko
RUDN University
Email: samusenko@rudn.ru
ORCID iD: 0000-0002-8350-9384
SPIN-код: 6613-5152
Ph.D of Technical Sciences, Head of the Department of Innovation Management in Industries, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationӘдебиет тізімі
- Gu X, Tong X. Overview of China Earth Observation Satellite Programs. IEEE Geoscience and Remote Sensing Magazine. 2015;3(3):113-129. https://doi.org/10.1109/MGRS.2015.2467172
- Maddock CA, Ricciardi LA, West M, West J, Kontis K, Rengarajan S, Evans DJA, Milne A, McIntyre S. Conceptual design analysis for a two-stage-to-orbit semi-reusable launch system for small satellites. Acta Astronautica. 2018;152:782-792. https://doi.org/10.1016/J.ACTAASTRO.2018.08.021
- Thaheer ASM, Ismail NA, Amir MHH, Razak NA. Static and dynamic analysis of different MYSat frame structure. Journal of Mechanical Engineering and Sciences. 2024;10261-10278. http://doi.org/10.15282/jmes.18.4.2024.4.0810
- Abdelal GF, Abuelfoutouh N, Gad AH. Finite ele-ment analysis for satellite structures: applications to their design, manufacture and testing. London: Springer Publ; 2013. http://doi.org/10.1007/978-1-4471-4637-7
- Perez R. Introduction to satellite systems and per-sonal wireless communications. Wireless communications design handbook. 1998;1:1-30. ISBN: 9780123995957
- Warnakulasuriya HS. Vibration Analysis and Testing of a Satellite Structure during it’s Launch and In-flight Stages. Doctoral dissertation, Politecnico di Torino. 2021. Available from: https://webthesis.biblio.polito.it/20111/ (accessed: 10.12.2024).
- Jha R, Pausley M, Ahmadi G. Optimal active control of launch vibrations of space structures. Journal of spacecraft and rockets. 2003;40(6):868-874. https://doi.org/10.2514/2.7051
- Ando S, Shi Q. Prediction of Acoustically Induced Random Vibration Response of Satellite Equipments with Proposed Asymptotic Apparent Mass. Journal of Space Engineering. 2008;1(1):12-21. https://doi.org/10.1299/spacee.1.12
- Doyle D, Zagrai A, Arritt B, Cakan H. Damage detection in satellite bolted joints. Smart Materials, Adaptive Structures and Intelligent Systems. 2008;43321:209-218. https://doi.org/10.1115/SMASIS2008-550
- Doyle D, Zagrai A, Arritt B, Çakan H. Damage detection in bolted space structures. Journal of Intelligent Material Systems and Structures. 2010;21(3):251-264. https://doi.org/10.1177/1045389X09354785
- Kumar Y. The Environmental and EMI Testing for Satellites. Space Navigators. 2023. Available from: https://www.spacenavigators.com/post/the-environmentaland-emi-testing-for-satellites (accessed: 10.12.2024).
- Asdaghpour F, Sadeghikia F, Farsi MA. Thermal Effects of the Space Environment on the Radiation Characteristics of a Reflector Antenna in LEO Satellite. Journal of Space Science and Technology. 2022;15(2):103-113. EDN: PGPIGY
- Esha N, Hausmann J. Material Characterization Required for Designing Satellites from Fiber-Reinforced Polymers. Journal of Composites Science. 2023;7(12):515. https://doi.org/10.3390/jcs7120515 EDN: XRUMIJ
- Naebe M, Abolhasani MM, Khayyam H, Amini A, Fox B. Crack damage in polymers and composites: a review. Polymer Reviews. 2016;56(1):31-69. https://doi.org/10.1080/15583724.2015.1078352
- Grossman E, Gouzman I. Space environment effects on polymers in low earth orbit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2003;208:48-57. https://doi.org/10.1016/S0168-583X(03)00640-2 EDN: KIRTZF
- Li J, Yan S, Cai R. Thermal analysis of composite solar array subjected to space heat flux. Aerospace Science and Technology. 2013;27(1):84-94. https://doi.org/10.1016/j.ast.2012.06.010
- Teichman LA. NASA/SDIO Space Environmental Effects on Materials Workshop: part 1. National aeronautics and space administration hampton va langley research center. Defense Technical Information Center. 1989. Available from: https://archive.org/details/DTIC_ADA351614 (accessed: 10.12.2024).
- Toto E, Lambertini L, Laurenzi S, Santonicola MG. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers. 2024;16(3):382. https://doi.org/10.3390/polym16030382 EDN: OVVUUM
- Lopez-Calle I, Franco AI. Comparison of cubesat and microsat catastrophic failures in function of radiation and debris impact risk. Scientific Reports. 2023;13(1):385. https://doi.org/10.1038/s41598-022-27327-z EDN: EGSBHE
- Bedingfield KL, Leach RD. Spacecraft system failures and anomalies attributed to the natural space environment. National Aeronautics and Space Administration, Marshall Space Flight Center. 1996. Available from: https:// archive.org/details/NASA_NTRS_Archive_19960050463 (accessed: 10.12.2024).
- de Groh KK, Banks BA, Miller SKR, Dever JA. Degradation of spacecraft materials. In: Handbook of Environmental Degradation of Materials. 2018:601-645. https://doi.org/10.1016/B978-0-323-52472-8.00029-0
- Dever J, Banks B, de Groh K, Miller S. Degradation of spacecraft materials. In: Handbook of environmental degradation of materials. 2005:465-501. https://doi.org/10.1016/B978-081551500-5.50025-2 EDN: YYRJPZ
- Drolshagen G. Impact effects from small size meteoroids and space debris. Advances in space Research. 2008;41(7):1123-1131. https://doi.org/10.1016/j.asr.2007.09.007
- Xiong L, Chuang AC, Thomas J, Prost T, White E, Anderson I, Singh D. Defect and satellite characteristics of additive manufacturing metal powders. Advanced Powder Technology. 2022;33(3):103486. https://doi.org/10.1016/j.apt.2022.103486 EDN: SKXKYQ
- Arsic M, Aleksic V, Andelkovic Z. Theoretical and experimental analysis of welded structure supporting satellite planetary gear. Structural Integrity and Life-Integritet I Vek Konstrukcija. 2007;7(1):5-12. Available from: http://divk.inovacionicentar.rs/ivk/pdf/005-IVK1-2007-MA-VA-ZA.pdf (accessed: 10.12.2024).
- Reda R, Ahmed Y, Magdy I, Nabil H, Khamis M, Refaey A, et al. Basic principles and mechanical considerations of satellites: a short review. Transactions of the Institute of Aviation. 2023;272(3):40-54. https://doi.org/10.2478/tar-2023-0016 EDN: RZFYAO
- Lee K, Han S, Hong JW. Post-buckling analysis of space frames using concept of hybrid arc-length methods. International Journal of Non-Linear Mechanics. 2014;58:76-88. https://doi.org/10.1016/j.ijnonlinmec.2013.09.003
- Goto A, Yukumatsu K, Tsuchiya Y, Miyazaki E, Kimoto, Y. Changes in optical properties of polymeric materials due to atomic oxygen in very low Earth orbit. Acta Astronautica. 2023;212:70-83. https://doi.org/10.1016/j.actaastro.2023.07.036 EDN: UVJUGP
- Banks BA, Miller SKR, de Groh KK, Demko R. Atomic oxygen effects on spacecraft materials. In: Ninth International Symposium on Materials in a Space Environ-ment (No. NASA/TM-2003-212484). 2003. Available from: https://ntrs.nasa.gov/api/citations/20030062195/down loads/20030062195.pdf (accessed: 10.12.2024).
- Allegri G, Corradi S, Marchetti M, Milinchuck V. Atomic oxygen degradation of polymeric thin films in low Earth orbit. AIAA Journal. 2003;41(8):1525-1534. https://doi.org/10.2514/2.2103 EDN: LIBZWH
- Wnuk MP. Structural integrity of bonded joints. Physical Mesomechanics. 2020;13(5-6):255-267. https://doi.org/10.1016/j.physme.2010.11.006 EDN: XZJCKO
- Bhandari P. Effective Solar Absorptance of Multilayer Insulation. SAE International Journal of Aerospace. 2009; 4(1):210-218. http://doi.org/10.4271/2009-01-2392
- Tachikawa S, Nagano H, Ohnishi A, Nagasaka Y. Advanced passive thermal control materials and devices for spacecraft: a review. International Journal of Thermo-physics. 2022;43(6):91. http://doi.org/10.1007/s10765-022-03010-3
- Van Wagenen R. The ISS Engineering Feat: Solar Array Repair. ISS National Laboratory Center for the Advancement of Science in Space. 2020. Available from: https://issnationallab.org/education/the-iss-engineering-feat-solar-array-repair (accessed: 10.12.2024).
- Tredway WK, McCluskey PH, Prewo KM. Carbon fiber reinforced glass matrix composites for satellite applications. Contract N00014-89-C-0046. 1992;14(89-C):0046. Available from: https://archive.org/details/DTIC_ADA2 53018 (accessed: 10.12.2024).
- El-Hameed AM. Radiation effects on composite materials used in space systems: a review. NRIAG Journal of Astronomy and Geophysics. 2022;11(1):313-324. https://doi.org/10.1080/20909977.2022.2079902 EDN: XRARLO
- Toto E, Lambertini L, Laurenzi S, Santonicola MG. Recent Advances and Challenges in Polymer-Based Materials for Space Radiation Shielding. Polymers. 2024;16(3):382. https://doi.org/10.3390/polym16030382 EDN: OVVUUM
- Taylor EW, Nichter JE, Nash F, Hash F, Szep AA, Michalak RJ, et al. Radiation-resistant polymer-based photonics for space applications. In: Photonics for Space Environments IX. 2004;5554:15-22. http://doi.org/10.1117/12.556659
- Yu Z, Ren Z, Tao J, Chen X. A reliability assessment method based on an accelerated testing under thermal cycling environment. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2014; 229(2):97-104. https://doi.org/10.1177/1748006X14558132
- Kashyzadeh KR, Farrahi GH, Shariyat M, Ahmadian MT. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components. Engineering Failure Ana-lysis. 2018;90:534-553. https://doi.org/10.1016/j.engfailanal.2018.03.033
- Abdollahnia H, Elizei AMH, Kashyzadeh KR. Multiaxial fatigue life assessment of integral concrete bridge with a real-scale and complicated geometry due to the simultaneous effects of temperature variations and sea waves clash. Journal of Marine Science and Engineering. 2021;9(12):1433. https://doi.org/10.3390/jmse9121433 EDN: MPPSSO
- Kashyzadeh KR. Effects of axial and multiaxial variable amplitude loading conditions on the fatigue life assessment of automotive steering knuckle. Journal of Failure Analysis and Prevention. 2020;20(2):455-463. https://doi.org/10.1007/s11668-020-00841-w EDN: JNNWPQ
- Kashyzadeh KR, Souri K, Bayat AG, Jabalba-rez RS, Ahmad M. Fatigue life analysis of automotive cast iron knuckle under constant and variable amplitude loading conditions. Applied Mechanics. 2022;3(2):517-532. https://doi.org/10.3390/applmech3020030 EDN: FTQZWL
- Kashyzadeh KR. Failure Strength of Automotive Steering Knuckle Made of Metal Matrix Composite. Applied Mechanics. 2023;4(1):210-229. https://doi.org/10.3390/applmech4010012 EDN: JXAPJY
- Hermansa M, Kozielski M, Michalak M, Szczyrba K, Wróbel Ł, Sikora M. Sensor-based predictive maintenance with reduction of false alarms - A case study in heavy industry. Sensors. 2021;22(1):226. https://doi.org/10.3390/s22010226 EDN: XCJJHK
- Kaiser KA, Gebraeel NZ. Predictive maintenance management using sensor-based degradation models. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2009;39(4):840-849. https://doi.org/10.1109/TSMCA.2009.2016429
Қосымша файлдар
