Digital Modelling of Low-Frequency ECG Signals Denoising


Cite item

Abstract

The problem of low-frequency noise (baseline wander) in long-duration digital electrocardiogram (ECG) signals, which can distort critical diagnostic features such as the ST-segment and T-wave morphology, is considered. Digital filtering methods are studied with an emphasis on low-frequency noise extraction and correction using Chebyshev type II and Butterworth filters synthesized in Python. The results show that a 7th-order high-pass filter with a cutoff frequency of 1 Hz effectively isolates the zero-potential line, whereas the filtfilt function is essential to avoid phase distortions. The success of the filtering method depends on the rate of change of the zero-potential line, and further work is required to develop quantitative criteria for evaluating and correcting filter-induced distortions. The proposed approach aims to improve automated ECG analysis and reduce false alarms in cardiac-monitoring systems.

About the authors

Sinan V. Kurbanov

RUDN University

Author for correspondence.
Email: ya.sinan@yandex.ru
ORCID iD: 0009-0005-6632-9102
SPIN-code: 1127-5326

Postgraduate student of the Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Denis A. Andrikov

RUDN University

Email: andrikovdenis@mail.ru
ORCID iD: 0000-0003-0359-0897
SPIN-code: 8247-7310

Ph.D. (Technical Sciences), Associate Professor of the Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Svetlana V. Agasieva

RUDN University

Email: agasieva-sv@rudn.ru
ORCID iD: 0000-0002-9089-1411
SPIN-code: 9696-6864

Ph.D. (Technical Sciences), Associate Professor of the Department of Nanotechnology and Microsystem Engineering, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Artem V. Iaroshenko

RUDN University

Email: 1142240338@pfur.ru
ORCID iD: 0009-0009-8379-622X

Postgraduate student of the Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Chieng TM, Hau Y, Omar Z. The study and comparison between various digital filters for ECG denoising. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). Sarawak, Malaysia, 2018:226-232. https://doi.org/10.1109/iecbes.2018.8626661
  2. Hramov AE, Koronovskii AA, Makarov VA, Maksimenko VA, Pavlov AN, Sitnikova E. Brief Tourof Wavelet theory. Springer Series in Synergetics. 2021;15-73. https://doi.org/10.1007/978-3-030-75992-6_2
  3. Singh BN, Tiwari AK. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing. 2006;16(3):275-287. https://doi.org/10.1016/j.dsp.2005.12.003
  4. Vullings R, Vries BD, Bergmans J. An adaptive kalman filter for ECG signal enhancement. IEEE Transactions on Biomedical Engineering. 2011;58(4):1094-1103. https://doi.org/10.1109/tbme.2010.2099229
  5. Hesar HD, Mohebbi M. An adaptive kalman filter bank for ECG denoising. IEEE Journal of Biomedical and Health Informatics. 2021;25(1):13-21. https://doi.org/10.1109/jbhi.2020.2982935 EDN: YEKLCI
  6. Rao DrBR, Priyanka K, Raju BB, Deepak S. EMD and wavelet-based ECG signal denoising and QRS complex detection. International journal of scientific research in engineering and management. 2024;08(04):1-7. https://doi.org/10.17148/IJIREEICE.2015.3203
  7. Liu F, Xu Y, Yao Y. Highly efficient low noise solutions in ECG signals. Journal of Physics: Conference Series. 2022;2246(1):012030. https://doi.org/10.1088/1742-6596/2246/1/012030 EDN: YFFCQI
  8. Ahmad RUS, Khan W, Khan MS, Cheung P. Emerging rapid detection methods for the monitoring of cardiovascular diseases: Current trends and future perspectives. Materials Today Bio. 2025;32:01663. https://doi.org/10.1016/j.mtbio.2025.101663
  9. Djigan VI. Adaptive signal filtering: theory and algorithms. Moscow: Technosphera Publ.; 2013 (In Russ.) ISBN 978-5-94836-342-4
  10. Andrikov DA, Kurbanov SV. Algorithmic Support for Spectral Processing of Cardiograms. RUDN Journal of Engineering Research. 2024;25(2):111-120. (In Russ.) https://doi.org/10.22363/2312-8143-2024-25-2-111-120 EDN: HMIHLA
  11. Meyer CR, Keiser HN. Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Computers and Bio-medical Research. 1977;10(5):459-470. https://doi.org/10.1016/0010-4809(77)90021-0
  12. Sörnmo L, Laguna P. Electrocardiogram (ECG) signal processing. Wiley encyclopedia of biomedical engineering. 2006;2:1298-1313. https://doi.org/10.1002/9780471740360.ebs1482
  13. Chouhan VS, Mehta SS. Total Removal of Base-line Drift from ECG Signal. 2007 International Conference on Computing: Theory and Applications (ICCTA’07); 2007 Mar 05-07; Kolkata, India, 2007:512-515. https://doi.org/10.1109/iccta.2007.126
  14. Chatterjee S, Thakur RS, Yadav RN, Gupta L, Raghuvanshi DK. Review of noise removal techniques in ECG signals. IET Signal Processing. 2020;14(9):569-590. https://doi.org/10.1049/iet-spr.2020.0104 EDN: AYCXCR
  15. Chieng TM, Hau YW, Bin Omar Z, Lim CW. Qualitative and quantitative performance comparison of ECG noise reduction and signal enhancement method based on various digital filter designs and discrete Wavelet transform. International Journal of Computing and Digital Systems. 2020;9(4): 553-565. https://doi.org/10.12785/ijcds/090404 EDN: IQGPZL
  16. Chavan M, Agarwala R, Uplane MD. Comparative study of Chebyshev I and Chebyshev II filter used for noise reduction in ECG signal. International Journal of Circuits, Systems and Signal Processing. 2008;2(1):1-17.
  17. Kaur M, Singh B, Seema. Comparison of different approaches for removal of baseline wander from ECG signal. International Conference on Welding Engineering and Technology (ICWET). 2011 Feb 25-26; Mumbai, Maharashtra, India. New York: Association for Computing Machinery. 2011:1290-1294. https://doi.org/10.1145/1980022.1980307
  18. Chuchupal VY. Ways to reduce the computational complexity of neural language models. Speech Technologies. 2020;(3-4):16-29 (In Russ.) EDN: NOPIOU

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).