Aircraft Pitch Control Via Parametric Identification and PID Optimization


Cite item

Full Text

Abstract

A comprehensive methodology for designing an aircraft pitch angle control system is proposed, combining mathematical modeling, aerodynamic parameter identification, and controller optimization. A comparative study was conducted on the accuracy of the Euler and 4th-order Runge-Kutta methods for numerical integration of longitudinal short period motion equations in identification tasks. It was established that the Runge-Kutta method provides higher accuracy for estimating aerodynamic force coefficients, while the Euler method is preferable for moment analysis, defining the criteria for algorithm selection during data generation. Automated tuning of the PID controller in Simulink achieved record dynamic system performance characteristics (without considering the actuator): rise time - 0.0709 s, overshoot - 11.6%, which is 20-30% superior to results from known counterparts. The developed approach demonstrates the possibility of replacing labor-intensive flight tests with digital models while maintaining accuracy, thereby reducing design time. The results confirm that the integration of numerical modeling, parametric identification, and optimization forms a new standard for preliminary studies in aviation technology, aligning with the digitalization trends in the aerospace industry.

About the authors

Lin Aung San

Higher Education Center of the Defence Services Academy

Author for correspondence.
Email: sunlinaung91788@gmail.com
ORCID iD: 0009-0002-2475-2875

Master student

Pyin Oo Lwin, Myanmar

References

  1. Efremov AV, Zakharchenko VF, Ovcharenko VN, Sukhanov VL. Flight dynamics: Textbook for students of higher educational institutions; edited by G.S. Byushgens. Moscow: Mechanical Engineering, 2017. (In Russ.) ISBN 978-5-9500368-0-4
  2. Byushgens GS. Aerodynamics, stability and controllability of supersonic aircraft. Moscow: Nauka Publ.; 1998. (In Russ.) ISBN 5-02-015111-4
  3. Du P, Zhao Qi, Wu X, Zhang L. Aerodynamic characteristics analysis of the transitional state of foldable-wing UAVs. Journal of Physics: Conference Series. 2025;2977:012035. http://doi.org/10.1088/1742-6596/2977/1/012035 EDN: AZXORD
  4. Averina TA, Rybakov KA. A modification of numerical methods for stochastic differential equations with first integrals. Numerical Analysis and Applications. 2019;12(3):203-218. http://doi.org/10.1134/S199542391 9030017 EDN: JRMYIX
  5. Grauer J. An interactive MATLAB program for fitting transfer functions to frequency responses. AIAA Scitech 2021 Forum, Conference Proceedings; 2021 Jan 11-15 and 19-21; Virtual Event. 2021. http://doi.org/10.2514/6.2021-1426
  6. Ashraf FF, Ali I. Feasibility analysis of numerical integration techniques in onboard flight control computer for impact point prediction. Proceedings of 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST); 2022 Aug 16-20; Islamabad, Pakistan. IEEE; 2022:419-425. http://doi.org/10.1109/IBCAST54850.2022.9990191
  7. Zhang M, Yao Y. Aircraft motion model based on numerical integration. Asian Simulation Conference. AsiaSim 2017. Communications in Computer and Information Science. 2017; Singapore: Springer Publ.; 2017:751;518-528. http://doi.org/10.1007/978-981-10-6463-0_44
  8. Korsun ON, Om MH. The practical rules for aircraft parameters identification based on flight test. Metascience in Aerospace. 2024;1(1):53-65. http://doi.org/10.3934/mina.2024003
  9. Zolotukhin YuN, Kotov KYu, Svitova AM, Semenyuk ED, Sobolev MA. Identification of the dynamics of a moving object with the use of neural networks. Optoelectronics, Instrumentation and Data Processing. 2018;54(6):617-622. http://doi.org/10.15372/AUT201806010 EDN: YQZELR
  10. Dipa SN, Sudha G. Longitudinal control of aircraft dynamics based on optimization of proportional-integral-derivative controller parameters. Thermophysics and Aeromechanics. 2016;23(2):193-202. (In Russ.) EDN: VZAWPB
  11. Ilyukhin SN, Toporkov AG, Koryanov VV, Ayupov RE, Pavlov NG. Actual aspects of control system development for advanced unmanned aerial vehicles. Engineering Journal: Science and Innovation. 2015;(9):12. (In Russ.) http://doi.org/10.18698/2308-6033-2015-9-1450 EDN: VCFBKP
  12. Vostrikov AS, Frantsuzova GA. Synthesis of PID controllers for nonlinear nonstationary objects. Avtometriya. 2015;51(5):53-60. (In Russ.) EDN: UYCHUL
  13. Ghoreyshi M, Bergeron K, Jirásek A, Seidel J, Lofthouse AJ, Cummings RM. Computational aerodynamic modeling for flight dynamics simulation of ram-air parachutes. Aerospace Science and Technology. 2016;54:286-301. http://doi.org/10.1016/J.AST.2016.04.024
  14. Abadeev EM, Piskunova OI, Tretyakov AV. Method of adaptive control for longitudinal motion of a small-size aircraft with limitation of the integral component signal. Trudy MAI. 2022;(124):18. (In Russ.) http://doi.org/10.34759/trd-2022-124-18 EDN: FPXHWA
  15. Eremin YeL. Adaptive system algorithms for an object with saturation and control delay. Computer Science and Management Systems. 2017;2(52):109-118. (In Russ.) http://doi.org/10.22250/isu.2017.52.109-118 EDN: YPDXPJ
  16. Sablina GV, Markova VA. Setting of parameters of the PID-controller in a system with a second-order object with a delay. Avtometriya. 2022;58(4):110-117. (In Russ.) http://doi.org/10.15372/AUT20220411 EDN: RIZPWY
  17. Ignatkin YuM, Makeev PV, Shomov AI. Computational modeling of applied tasks of helicopter aerodynamics based on non-linear vortical model of a rotor. Trudy MAI. 2016;(87):4. (In Russ.) EDN: WDJTZB
  18. Lukyanov VV, Alekseev AN, Zemlyany ES, Chekanov KA. Airplane director control algorithm in landing mode. Engineering Journal: Science and Innovation. 2020;11(107). (In Russ.) http://doi.org/10.18698/2308-6033-2020-11-2032
  19. Demin IO, Sablina GV. Research of methods for setting parameters of the PID controller. Automatics & Software Enginery. 2020;1(31):174-181. (In Russ.) EDN: CJCQFM

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).