Regression Neural Networks Advantage over Classical Regression Analysis

Cover Page

Cite item

Full Text

Abstract

In this study, two analyzing methods are used to predict housing prices in California: neural network forecasting methods and methods based on regression analysis. Using the example of individual forecast indicators produced on the basis of two methods, the forecast results are compared. The purpose of this study is to show that the accuracy of prediction by neural networks is higher than that of the classical method. The assessment is carried out by creating a product in Python, which was chosen for reasons of ease of implementation of this analysis, ease of implementation of the product, as well as ease of constructing a graphical analysis of the results obtained. An open data source consisting of sixteen thousand items, which includes a number of housing criteria and prices based on these criteria, was used as resources for training the neural network. A broad review of studies comparing the predictive performance of artificial neural network-based methods and other forecasting methods is conducted. Much attention is paid to comparing artificial neural network methods and linear regression methods. Based on the results of this study, it was revealed that the accuracy of the neural network model is much higher when predicting results using linear regression methods, depending on the introduction of new forecasting criteria.

About the authors

Olga A. Saltykova

RUDN University

Author for correspondence.
Email: saltykova-oa@rudn.ru
ORCID iD: 0000-0002-3880-6662
SPIN-code: 3969-6707

PhD in Physical and Mathematical Sciences, Associate Professor of the Department of Mechanics and Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Vyacheslav D. Saushkin

RUDN University

Email: kingrailag@gmail.com
ORCID iD: 0009-0007-2812-184X
SPIN-code: 1525-5653

Graduate student of the Department of Mechanics of Control Processes, Academy of Engineering

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

References

  1. Arkes J. Regression analysis: a practical intro-duction. Routledge. 2023. https://doi.org/10.4324/9781003285007
  2. Srilakshmi U, Manikandan J, Velagapudi T, Abhinav G, Kumar T, Dogiparthy S. A new approach to computationally-successful linear and polynomial regression analytics of large data in medicine. Journal of Computer Allied Intelligence. 2024;2(2):35-48. https://doi.org/10.69996/jcai.2024009 EDN: CPWMHQ
  3. Chatterjee S, Hadi AS. Regression analysis by example. John Wiley & Sons, 2015.
  4. Chen Q, Sabir Z, Umar M, Baskonus HM. A Bay-esian regularization radial basis neural network novel procedure for the fractional economic and environmental system. International Journal of Computer Mathematics. 2025;102(2):280-291. https://doi.org/10.1080/00207160. 2024.2409794
  5. Morland C, Tandetzki J, Schier F. An evaluation of gravity models and artificial neuronal networks on bilateral trade flows in wood markets. Forest Policy and Economics. 2025;172:103457. https://doi.org/10.1016/j.forpol.2025.103457 EDN: WLVUFE
  6. Levine H, Jørgensen N, Martino-Andrade A, Mendiola Ja, Weksler-Derri D, Jolles M, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Human reproduction update. 2023;29(2):157-176. https://doi.org/10.1093/humupd/dmac035 EDN: IXUWPZ
  7. Jin B, Xu X. China commodity price index (CCPI) forecasting via the neural network. International Journal of Financial Engineering. 2025;1-27. https://doi.org/10.1142/S2424786325500033 EDN: UFVNOO
  8. Seifipour R, Mehrabian A. Application of Artificial Neural Networks in Economic and Financial Sciences. IntechOpen. 2025. https://doi.org/10.5772/intechopen.1007604
  9. Guo R, Liu J, Yu Y. Digital transformation, credit availability, and MSE performance: Evidence from China. Finance Research Letters. 2025;72:106552. https://doi.org/10.1016/j.frl.2024.106552 EDN: FARNAP
  10. Zhang Y. et al. A sequential MAE-clustering self-supervised learning method for arrhythmia detection. Expert Systems with Applications. 2025;269:126379. https://doi.org/10.1016/j.eswa.2025.126379 EDN: AYJFTC
  11. Bashir T, Li X, Zhang L, Wang J, Jiang S, MaY, et al. Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models. Renew-able Energy. 2025;269:126379. https://doi.org/10.1016/j.renene.2024.122055 EDN: NRTAPU
  12. Sakka ME, Ivanovich M, Chaari L, Mothe J. A Review of CNN Applications in Smart Agriculture Using Multimodal Data. Sensors. 2025;25(2):472. https://doi.org/10.3390/s25020472 EDN: ITDWUD
  13. Protoulis T, Kordatos I, Kalogeropoulos I, Sarim-veis H, Alexandridis A. Control of wastewater treatment plants using economic-oriented MPC and attention-based RNN disturbance prediction models. Computers & Chemical Engineering. 2025:109009. https://doi.org/10.1016/j.compchemeng.2025.109009 EDN: KEHEID
  14. Dezfooli FP, Zoej MJV, Mansourian A, Yous-sefi F, Pirasteh S. GEE-based environmental monitoring and phenology correlation investigation using Support Vector Regression. Remote Sensing Applications: Society and Environment. 2025;37:101445. https://doi.org/10.1016/j.rsase.2024.101445 EDN: UFXMYW
  15. Oehr P. Interrelationships Among Sensitivity, Precision, Accuracy, Specificity and Predictive Values in Bioassays, Represented as Combined ROC Curves with Integrated Cutoff Distribution Curves and Novel Index Values. Diagnostics. 2025:15(4):410. https://doi.org/10.3390/diagnostics15040410 EDN: RVVGUV
  16. Nagy I, Curik I, Nguyen AT, Farkas J, Kövér G. The importance of random effects in detecting purging of inbreeding depression: A model comparison in Pannon White rabbits. Animal. 2025;19(2):101412. https://doi.org/10.1016/j.animal.2024.101412 EDN: YOKBLG
  17. Groen J, De Haan BM, Overduin RJ, Haijer-Schreuder AB, Derks TG, Heiner-Fokkema MR. A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles. Orphanet Journal of Rare Diseases. 2025;20(1):15. https://doi.org/10.1186/s13023-025-03537-2 EDN: GXCZCP

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).