THE NONLINEAR BENDING OF SIMPLY SUPPORTED ELASTIC PLATE

Cover Page

Cite item

Full Text

Abstract

In this article, assumptions in Classical Plate Theory (CPT) are explained; followed by concepts involved in Finite Element discretization for elastic Plate bending in CPT. Computer implementation aspects and Numerical Results of CPT elements are also included for analyzing nonlinear bending of simply supported elastic plates.

About the authors

Gil-oulbé Mathieu

Peoples’ Friendship University of Russia

Author for correspondence.
Email: giloulbem@mail.ru

Associate professor of the Department of Architecture and Construction

Miklukho-Maklaya str., 6, Moscow, Russia, 117198

Dau Tyekolo

Peoples’ Friendship University of Russia

Email: tiek.d@hotmail.com

Assistant professor of the Department of Architecture and Construction

Miklukho-Maklaya str., 6, Moscow, Russia, 117198

Soresa Belay

Peoples’ Friendship University of Russia

Email: soresably@gmail.com

Graduate student of the Department of Architecture and Construction

Miklukho-Maklaya str., 6, Moscow, Russia, 117198

References

  1. Eduard Ventsel Theodor Krauthammer (2001) Thin Plates and Shells-theory, analysis and applications (The Pennsylvania State University, Pennsylvania).
  2. IT Kharagpur NPTEL (National Program on Technology Enhanced Learning) Web Course. #.Module 1.
  3. URL: http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/Home.html (21.12.2016).
  4. Reddy, J.N. A Penalty Plate-Bending Element for the Analysis of Laminated AnisotropicComposite Plates. Int. J. Numer. Meth. Engng., Vol. 15, pp. 1187-1206, 1980.
  5. Way, S. Uniformly Loaded, Clamped, Rectangular Plates with Large Deformation. Proc. 5th Int.Congr. Appl. Mech. (Cambridge, Mass., 1938), John Wiley, pp. 123-238.
  6. Levy, S. Bending of Rectangular Plates with Large Deflections. Report No. 737, NACA, 1942.
  7. Wang, C.T. Bending of Rectangular Plates with Large Deflections. Report No. 1462, NACA,1948.
  8. Yamaki, N. Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates. ZAMM, Vol. 41, pp. 501-510, 1967.
  9. Kawai, T. and YOSHIMURA, N. Analysis of Large Deflection of Plates by the Finite Element Method. Int. J. Numer. Meth. Engng., Vol. 1, pp. 123-133, 1969.
  10. Pica, A., Wood, R.O. and Hinton, E. Finite Element Analysis of Geometrically Nonlinear Plate Behavior Using a Mindlin Formulation. Computers & Structures, Vol. 11, pp. 203-215, 1980.
  11. Levy, S. Square Plate with Clamped Edges Under Pressure Producing Large Deflections. NACA, Tech. Note 847, 1942.
  12. Zaghloul, S.A. and Kennedy, J.B. Nonlinear Analysis of Unsymmetrically Laminated Plates.J. Engng. Mech. Div., ASCE, Vol. 101 (EM3), pp. 169-185, 1975.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).