Моделирование динамики раскрытия крупногабаритного трансформируемого рефлектора космической антенны из композиционного материала

Обложка

Цитировать

Полный текст

Аннотация

Крупногабаритные космические конструкции (ККК) занимают особое место среди других объектов космической техники. Из-за больших размеров они компактно укладываются под обтекатели ракет-носителей или в грузовые отсеки космических аппаратов (КА) по типу Space Shuttle. После вывода на рабочую орбиту ККК автоматически развертываются и принимают заданную конфигурацию с использованием трансформируемых элементов, одновременно выполняющих функции силового каркаса и приводов. Операцию развертывания следует проводить в заданные сроки, и она не должна приводить к снижению прочности, нарушению формы и потере пространственной ориентации конструкции. Для выполнения этих требований необходимо теоретически исследовать динамику развертывания проектируемой ККК. Настоящая работа нацелена на поиск оптимальных конструкторско-технологических решений сверхлегкого трансформируемого рефлектора зеркальной космической антенны из металлического сетеполотна с силовыми элементами в виде телескопических полых стержней из углепластика. Проведено численное моделирование динамики раскрытия силовых элементов антенного рефлектора с учетом присоединенного к ним сетеполотна с помощью отечественного программного комплекса EULER 10.25. В результате моделирования определено влияние натяжения сетеполотна на процесс раскрытия конструкции рефлектора. Учет упругой нагрузки от сетеполотна на силовые элементы позволит обеспечить их стабильность и жесткость и увеличить точность натяжения сетеполотна.

Об авторах

Сергей Васильевич Резник

Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: sreznik@bmstu.ru
SPIN-код: 1000-3828

доктор технических наук, профессор, заведующий кафедрой CМ-13 ракетно-космических композитных конструкций

Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1

Дмитрий Евгеньевич Чубанов

Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)

Email: chubanoff1994@gmail.com

магистр техники и технологии, выпускник кафедры CМ13 ракетно-космических композитных конструкций

Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1

Список литературы

  1. Sokolov A.G., Gvamichava A.S. Resheniya inzhenernyh konstrukcij kosmicheskih radioteleskopov [Solutions of the engineering constructions of space radiotelescopes]. Antennas. Iss. 29, 2—10. Moscow: Radio i svyaz’ Publ., 1981. (In Russ.)
  2. Bojkov V.G. Programmnyj kompleks avtomatizirovannogo dinamicheskogo analiza mnogokomponentnyh mekhanicheskih system EULER [Software package for automated dynamic analysis of EULER multicomponent mechanical systems]. SAPR i grafika [SAPR and Graphics], 2000, No. 9, 17—20. (In Russ.)
  3. Usyukin V.I., Arhipov Yu.M. Modelirovanie statiki i dinamiki krupnogabaritnyh reflektorov kosmicheskih antenn: uchebnoe posobie [Modeling of statics and dynamics of large-sized reflectors of space antennas: a manual]. Мoscow: Bauman MSTU Publ., 2015, 56. Available from: http:// ebooks.bmstu.ru/catalog/75/book973.html (accessed: 11.08.2018). (In Russ.)
  4. Meshkovskij V.E. Geometricheskaya model’ raskryvayushchejsya krupnogabaritnoj kosmicheskoj konstrukcii fermennogo tipa [Geometric model of a large-scale open space construction of a truss type]. Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2009, No. 4, 56—71. (In Russ.)
  5. Kuznecova A.O. Issledovanie dinamiki dvizheniya raskryvayushchihsya mekhanicheskih sistem s uprugimi svyazyami [Investigation of the dynamics of the motion of unfolding mechanical systems with elastic bonds]. Vestnik SibGAU [Vestnik SibSAU. Aerospace technologies and control systems], 2005, No. 3, 135—138. (In Russ.)
  6. Zimin V.N., Meshkovskij V.E. Dinamika krupnogabaritnyh raskryvayushchihsya kosmicheskih konstrukcij [Dynamics of large-sized unfolding space structures]. Proceedings of the 2nd International Conference “Rocket and Space Technology: Fundamental and Applied Problems” (November 18—21, 2003, Moscow). Part II. Moscow: Bauman MSTU Publ., 2005, 27—32. (In Russ.)
  7. Smirnov A.V., Baryshev A., Pilipenko S.V. et al. Space mission Millimetron for terahertz astronomy. Proceedings of SPIE, 21 September 2012, Vol. 8442, 9 p. doi: 10.1117/12.927184
  8. Banichuk N.V., Karpov N.I., Klimov D.I., Markeev A.P., Sokolov B.N., Sharanyuk A.V. Mekhanika bol’shih kosmicheskih konstrukcij. Moscow: Factorial Publ., 1997, 302. (In Russ.)
  9. Zimin V.N. Razrabotka metodov analiza dinamiki i ocenki rabotosposobnosti raskryvayushchihsya krupnogabaritnyh kosmicheskih konstrukcij fermennogo tipa [Development of methods for analyzing the dynamics and assessing the operability of large-scale open space structures of the truss type]: Dissertation. Мoscow: Bauman MSTU Publ., 2008, 309. (In Russ.)
  10. Arhipov M.Yu., Telepnev P.P. Kompleks rabot po chislennomu modelirovaniyu dinamiki konstrukcii kosmicheskogo radioteleskopa proekta “Radioastron”. Kosmicheskie issledovaniya [Cosmic Research], 2014, Vol. 52, No. 5, 418—422. (In Russ.)
  11. Golubev E.S., Galinovskij A.L., Arhipov M.Yu. Modelirovanie i analiz dinamicheskih harakteristik konstrukcii krupnogabaritnyh teplozashchitnyh ehkranov kosmicheskogo teleskopa [Modeling and analysis of the dynamic design characteristics of the large-size heat shields of the space telescope]. Izvestiya vysshih uchebnyh zavedenij. Seriya: Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2016, No. 2, 76—84. doi: 10.18698/0536-1044-20162-76-84 (In Russ.)
  12. Imbriale W. Spaceborne antennas for planetary exploration. N.Y.: John Wiley and Sons, 2006, 592.
  13. Kurkov C.B., Gutovskij I.E. Modelirovanie dinamiki processa raskrytiya kosmicheskogo apparata metodom konechnyh ehlementov XX Mezhdunarodnaya konferentciya “BEM & FEM”. [Conference proceedigs]. Saint Petersburg, 2003, 41—48. (In Russ.)
  14. Krylov A.V., Churilin S.A. Modelirovanie razvertyvaniya mnogozvennyh zamknutyh kosmicheskih konstrukcij [Modeling the deployment of multi-tier closed space structures]. Inzhenernyj zhurnal: nauka i innovacii [Engineering Journal: Science and Innovation], 2012, No. 8(8). doi: 10.18698/23086033-2012-8-449 (In Russ.)
  15. Usyukin V.I. Stroitel’naya mekhanika konstrukcij kosmicheskoj tekhniki [Construction mechanics of space technology constructions]. Moscow: Mashinostroenie Publ., 1988. 392. (In Russ.)
  16. Reznik S.V., Prosuntsov P.V., Mikhailovsky K.V., Shafikova I.R. Material science problems of building space antennas with a transformable reflector 100 m in diameter. IOP Conf. Series: Materials Science and Engineering, 2016, 153 012001. doi: 10.1088/1757-899X/153/1/012001
  17. Yudincev V.V. Modelirovanie processov raskrytiya mnogoehlementnyh konstrukcij kosmicheskih apparatov [Modeling of the processes of disclosure of multi-element structures of space vehicles]. Polyot [Flight], 2012, No. 5, 28—33. (In Russ.)
  18. Lyannoj E.G., Kurkov S.V., Gutovskij I.E. Ispol’zovanie matematicheskih modelej dlya ocenki i obespecheniya bezopasnyh zon raskrytiya transformiruemoj fermy. Trudy XXV Rossijskoj shkoly i XXXV Ural’skogo seminara po problemam nauki i tekhnologij [Conference proceedigs]. Moscow: Mezhregional’nyj sovet po nauke i tekhnologiyam, 2005, 78—87.(In Russ.)
  19. Dement’ev G.P., Zaharov A.G., Kazarov Yu.K., et al. Fiziko-tekhnicheskie osnovy primeneniya i sozdaniya kosmicheskih apparatov [Physicotechnical foundations of the application and creation of space vehicles]. Moscow: Mashinostroenie Publ., 1987, 264. (In Russ.)
  20. Andreeva E.A., Blinov A.F., Gimmel’man V.G., Fedorov Ya.Yu., Shesnyak S.S. Transformirue maya shtanga krupnogabaritnogo reflektora [Transformable rod of large reflector]. Materialy XIX Reshetnevskih chtenij [Conference proceedigs], 2015, Vol. 1, No. 19, 65—67. (In Russ.)
  21. Bushuev A.Yu., Farafonov B.A. Matematicheskoe modelirovanie processa raskrytiya solnechnoj batarei bol’shoj ploshchadi [Mathematical modeling of the process of opening a large solar battery]. Matematicheskoe Modelirovanie i Chislennye Metody [Mathematical modeling and numerical methods], 2014, No. 2, 101—114. (In Russ.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».