ВЛИЯНИЕ ЭНЕРГИИ НА ФАЗОВЫЙ СОСТАВ ПРОДУКТА БЕЗВАКУУМНОГО ЭЛЕКТРОДУГОВОГО СИНТЕЗА КУБИЧЕСКОГО КАРБИДА КРЕМНИЯ

Обложка

Цитировать

Полный текст

Аннотация

Изложены научно-технические основы безвакуумного плазменного метода получения карбида кремния, реализуемого при помощи дугового разряда постоянного тока между графитовыми электродами. В ходе серии экспериментов изменялась подведенная к системе энергия путем увеличения длительности горения дугового разряда при неизменном значении силы тока (165 А). В работе использовались два типа прекурсоров: 1) смесь порошкового кремния с рентгеноаморфным углеродом в виде микроразмерных волокон; 2) с порошковым углеродом; соотношение масс в исходной смеси составляло Si:C = 2:1. В результате оценки количественного состава продукта синтеза определены параметры эксперимента, которые позволяют добиться максимального содержания искомой фазы карбида кремния (до 45%). Определены параметры, при которых единственной примесной фазой в продукте является графит; в результате удалось отжигом в атмосферной печи при температуре 900 °С обеспечить очистку продукта от несвязанного углерода и тем самым получить карбид кремния с содержанием около 99%. Этот результат обеспечивают два фактора: наличие в составе смеси исходных реагентов углеродных волокон и достаточный уровень подведенной энергии порядка 216 кДж/г.

Об авторах

Александр Яковлевич Пак

Томский политехнический университет

Автор, ответственный за переписку.
Email: ayapak@tpu.ru

кандидат технических наук, доцент отделения автоматизации и робототехники инженерной школы информационных технологий и робототехники, Томский политехнический университет. Область научных интересов: порошковые материалы, карбиды, углеродные материалы, электроразрядные методы синтеза, фазовые превращения

Российская Федерация, 634050, Томск, пр-т Ленина, 30

Геннадий Яковлевич Мамонтов

Томский политехнический университет

Email: gmamontov@tpu.ru

доктор физико-математических наук, профессор отделения автоматизации и робототехники инженерной школы информационных технологий и робототехники, Томский политехнический университет. Область научных интересов: термодинамика, математическая статистика, высокотемпературные процессы, быстропротекающие процессы

Российская Федерация, 634050, Томск, пр-т Ленина, 30

Ольга Александровна Болотникова

Томский политехнический университет

Email: bolotnikovaoa@gmail.com

студентка отделения электроэнергетики и электротехники, Томский политехнический университет. Область научных интересов: карбид кремния, электроразрядные методы синтеза

Российская Федерация, 634050, Томск, пр-т Ленина, 30

Список литературы

  1. Andrievskii R.A. Nanorazmernyi karbid kremniya: sintez, struktura i svoistva [Nanosize silicon carbide: synthesis, structure and properties]. Uspekhi Khimii [Russian Chemical Reviews]. 2009. No. 78. P. 889—900. (in Russ.)
  2. Wu R., Zhou K., Yue C.Y., Wei J., Pan Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Progr. Mater.Sci. 2015. Vol. 72. P. 1—110.
  3. Zhang Y. et al. Chemical Physics Letters. 2017. Vol. 678. P. 17—22.
  4. Yanjie Su, Yafei Zhang. Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon. 2015. Vol. 83. P. 90—99.
  5. Jieshan Qiu, Yongfeng Li, Yunpeng Wang, Zongbin Zhao, Ying Zhou, Yanguo Wang. Synthesis of carbon-encapsulated nickel nanocrystals by arc-dischargeof coal-based carbons in water. Fuel. 2004. Vol. 83. P. 615—617.
  6. Jiang Zhao, Yanjie Su, Zhi Yang, Liangming Wei, Ying Wang, Yafei Zhang. Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon. 2013. Vol. 58. P. 92—98.
  7. Yanjie Su, Hao Wei, Tongtong Li, Huijuan Geng, Yafei Zhang. Low-cost synthesis of single-walled carbonnanotubes by low-pressure air arc discharge. Materials Research Bulletin. 2014. P. 23—24.
  8. Kimoto T. Bulk and epitaxial growth of silicon carbide. Progress in Crystal Growth and Characterization of Materials. 2016. Vol. 62. P. 329—351.
  9. Arora N., Sharma N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review // Diamond & Related Mater. 2014. Vol. 50. P. 135—50.
  10. Yao-Wen Yeh, Yevgeny Raitses, Nan Yao. Structural variations of the cathode deposit in the carbon arc. Carbon. 2016. Vol. 105. P. 490—495.
  11. Ng J., Raitses Y. Role of the cathode deposit in the carbon arc for the synthesis of nanomaterials. Carbon. 2014. Vol. 77. P. 80—88.
  12. Eom J.-H. et al. Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics. Journal of the European Ceramic Society. 2012. Vol. 32. P. 1283—1290.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».