Application of stochastic methods, wavelet transformations and support vectors for the study of electroencephalogram signals
- Autores: Tolmanova V.V.1, Andrikov D.A.1
-
Afiliações:
- RUDN University
- Edição: Volume 26, Nº 1 (2025)
- Páginas: 77-85
- Seção: Articles
- URL: https://journals.rcsi.science/2312-8143/article/view/327623
- DOI: https://doi.org/10.22363/2312-8143-2025-26-1-77-85
- EDN: https://elibrary.ru/KQBSVP
- ID: 327623
Citar
Texto integral
Resumo
This study explores the application of modern data processing methods - wavelet transformation, stochastic methods, and Support Vector Machine (SVM) - on real electroencephalogram (EEG) signals from open databases. Analyzing EEG signals is crucial for medical diagnostics and neuroscience, requiring sophisticated techniques due to high dimensionality and noise. Wavelet transformation allows decomposition of signals into frequency components with varying temporal resolutions, facilitating time-frequency analysis. Stochastic methods utilize probabilistic models for modeling random processes and analyzing data statistics. Meanwhile, SVM is a machine learning algorithm that identifies the optimal hyperplane to separate classes, enhancing generalization, particularly with complex nonlinear data. When comparing these methods, the specific data type and task should be considered: wavelet transformation is ideal for signal processing, stochastic methods are used for random processes, and SVM excels in classification tasks. Thus, selecting the most suitable approach should be based on a comparative analysis of method effectiveness in a particular context. This study will discuss these concepts and present examples of applying these techniques to EEG data, contributing to the analysis and classification of brain activity and the identification of pathologies.
Sobre autores
Veronika Tolmanova
RUDN University
Email: 1042210065@pfur.ru
ORCID ID: 0000-0001-9433-7859
Postgraduate student of the Department of Mechanics and Control Processes, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationDenis Andrikov
RUDN University
Autor responsável pela correspondência
Email: andrikovdenis@mail.ru
ORCID ID: 0000-0003-0359-0897
Código SPIN: 8247-7310
Ph.D. in Technical Sciences, Associate Professor of the Department of Mechanics and Control Processes, Academy of Engineering
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationBibliografia
- Petrosian A, Prokhorov D, Homan R. Reccurent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing. 2000;30(1):201-218. https://doi.org/10.1016/S0925-2312(99)00126-5
- Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods. 2003;123(1):69-87. https://doi.org/10.1016/S0165-0270(02)00340-0
- Albaqami H, Hassan G, Datta A. Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree. Biomedical Signal Processing and Control. 70, 2021;70(2):102957. https://doi.org/10.1016/j.bspc.2021.102957
- Nacpil E, Wang Z, Guan M. EEG-based Emergency Braking Prediction Using Data Ablation and SVM Classification. IEEE Sensors Journal. 2023;23(14):16013-16019. https://doi.org/10.1109/JSEN.2023.3283447
- Shanmugadass V, Suresh GR, Balakumaran T, Wise A. EEG Signal Analysis for Automated Epilepsy Seizure Detection Using Wavelet Transform and Artificial Neural Network. Journal of Medical Imaging and Health Informatics. 2019;9(6):1301-1306. https://doi.org/10.1166/jmihi.2019.2713
- Ullah I, Hussain M. An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach. Expert systems with applications. 2018;107:61-71. https://doi.org/10.1016/j.eswa.2018.04.021
- Karpov OE, Andrikov DA, Maksimenko VA, Hramov AE. Explainable artificial intelligence for medicine. Medical doctor and information technology. 2022;(2):4-11. (In Russ.) https://doi.org/10.25881/18110193_2022_2_4
- Sharova DE, Mikhailova AA, Gusev AV, Garbuk SV, Vladzymyrskyy AV, Vasilev YA. Аn analysis of global experience in regulations on the use of medical data for artificial intelligence systems development based on machine learning. Medical doctor and information technology. 2022;(4):28-39. (In Russ.) https://doi.org/10.25881/18110193_2022_4_28
- Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995;20(3):273-297. https://doi.org/10.1007/BF00994018
- Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical Neurophysiology. 2004;116(10):2266-2301. https://doi.org/10.1016/j.clinph.2005.06.011
- Thakor NV, Tong S. Advances in quantitative electroencephalogram analysis methods. Annual Review of Biomedical Engineering. 2004;6(1):453-95. https://doi.org/10.1146/annurev.bioeng.5.040202.121601
- Hramov AE, Koronovskii A, Makarov VA, Pavlov A, Sitnikova E. Wavelets in neuroscience. Springer Berlin Heidelberg; 2015. ISBN: 978-3-662-43850-3
- Hramov AE, Koronovskii AA, Makarov VA, Pavlov AN, Sitnikova E. Automatic Diagnostics and Process-ing of EEG. In: Wavelets in Neuroscience. Springer Series in Synergetics. Berlin, Heidelberg: Springer; 2014. https://doi.org/10.1007/978-3-662-43850-3_7
- Percival DB, Walden AT. Wavelet Methods for Time Series Analysis. Cambridge University Press; 2000. https://doi.org/10.1017/CBO9780511841040
- Hilarov VL. Epileptic seizures regularities, revealed from encephalograms time series by nonlinear mechanics methods. Journal of Physics Conference Series. 2019;1400(3):033011. https://doi.org/10.1088/1742-6596/1400/3/033011
- Peker M, Sen B, Delen D. A novel method for automated diagnosis of epilepsy using complex-valued classifiers and wavelet transform. Journal of Biomedical Informatics. 2016;20(1):108-118. https://doi.org/10.1109/JBHI.2014.2387795
- Meenakshi D, Singh A, Singh A. Frequency ana-lysis of healthy & epileptic seizure in EEG using fast fourier transform. Int. J. Eng. Res.Gen.Sci. 2014;2(4):683-691. Available from: https://oaji.net/articles/2014/786-1406216595.pdf (accessed: 17.07.2024).
- Sudalaimani C, Thomas TE, Sivakumaran N, Valsalam SR, Meethal SP, Sathish E. Seizure prediction using general regression neural network. 2017 Trends in Industrial Measurement and Automation (TIMA), Chennai, India, 2017. p. 1-7. https://doi.org/10.1109/TIMA.2017.8064810
- Savadkoohi M, Oladduni T. A machine learning approach to epileptic seizure prediction using electroencephalogram (EEG) signal. Journal of Applied Biomedicine. 2020;40(3): 1328-1341. https://doi.org/10.1016/j.bbe.2020. 07.004
- Devarajan K, Jyostna E, Jayasri K, Balasampath V. (2014). EEG-based epilepsy detection and prediction. Inter-national Journal of Engineering and Technology. 2014;6(3):212-216. https://doi.org/10.7763/IJET.2014.V6.698
Arquivos suplementares
