Моделирование температурного дрейфа периметра лазерного гироскопического датчика
- Авторы: Зубарев Я.А.1, Синельников А.О.2, Мнацаканян В.У.3
-
Учреждения:
- Научно-исследовательский институт «Полюс» имении М.Ф. Стельмаха
- Государственный научно-исследовательский институт приборостроения
- Национальный исследовательский технологический университет «МИСИС»
- Выпуск: Том 24, № 1 (2023)
- Страницы: 30-39
- Раздел: Статьи
- URL: https://journals.rcsi.science/2312-8143/article/view/327602
- DOI: https://doi.org/10.22363/2312-8143-2023-24-1-30-39
- EDN: https://elibrary.ru/DSOCIG
- ID: 327602
Цитировать
Полный текст
Аннотация
Представлены результаты моделирования температурного дрейфа периметра резонатора лазерного гироскопического датчика на базе кольцевого гелий-неонового лазера с круговой поляризацией излучения и магнитооптической частотной подставкой на эффекте Зеемана при помощи математического пакета MATLAB. Разработанный и реализованный в среде MATLAB алгоритм позволяет моделировать температурные деформации периметра зеемановского лазерного гироскопического датчика при изменении конфигурации его конструкционных элементов. В результате можно оценить качество поставляемого материала для изготовления резонатора кольцевого лазера, а также совокупный вклад конструкционных элементов в результирующий дрейф периметра зеемановского гироскопического датчика. Полученная модель является аналитическим инструментом дополнительного контроля качества оптического ситалла СО-115М, из которого изготавливается резонатор, и оптимизации конструкции зеемановского лазерного гироскопического датчика как локально, так и комплексно. Это необходимо для повышения эффективности стабилизации периметра кольцевого лазера в диапазоне рабочих температур с помощью активной системы регулировки периметра и пассивной термокомпенсации путем подбора конструкционных элементов с противоположными по знаку температурными коэффициентами линейного расширения. Использование разработанной модели в производстве лазерных гироскопов дает возможность осуществлять подбор конструкционных элементов зеемановского гироскопического датчика, что существенно увеличивает время его непрерывной работы в одномодовом режиме в широком температурном диапазоне при сохранении требуемой точности для систем ориентации, стабилизации и навигации различных летательных аппаратов.
Об авторах
Ярослав Андреевич Зубарев
Научно-исследовательский институт «Полюс» имении М.Ф. Стельмаха
Email: zubyar@mail.ru
ORCID iD: 0000-0002-4492-338X
аспирант, ведущий инженер участка 450/4 НПК-470 по лазерной гироскопии
Российская Федерация, 117342, Москва, ул. Введенского, д. 3, корп. 1Антон Олегович Синельников
Государственный научно-исследовательский институт приборостроения
Автор, ответственный за переписку.
Email: mr.sinelnikov.a@mail.ru
ORCID iD: 0000-0002-5579-3509
SPIN-код: 2442-7507
Scopus Author ID: 55382453500
кандидат технических наук, начальник лаборатории № 251-1, отдел № 250 разработки гироинерциальных блоков на базе лазерных гироскопов
Российская Федерация, 129226, Москва, пр-т Мира, д. 125Виктория Умедовна Мнацаканян
Национальный исследовательский технологический университет «МИСИС»
Email: artvik@bk.ru
ORCID iD: 0000-0001-9276-7599
SPIN-код: 8693-8313
Scopus Author ID: 6603501339
доктор технических наук, профессор кафедры горного оборудования, транспорта и машиностроения
Российская Федерация, 119049, Москва, Ленинский пр-кт, д. 4, стр. 1Список литературы
- Hering E, Schönfelder G, Basler S, Biehl K-E, Burkhardt T, Engel T, Feinäugle A, Fericean S, Forkl A, Giebeler C, Hahn B, Halder E, Herfort Ch, Hubrich S, Reichenbach J, Röbel M, Sester S. Geometric quantities. In: Hering E, Schönfelder G. (eds.) Sensors in Science and Technology. Wiesbaden: Springer; 2022. p. 147-372. https://doi.org/10.1007/978-3-658-34920-2_3
- Chopra KN. Ring laser gyroscopes. Optoelectronic Gyroscopes: Design and Applications. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-15-8380-3_1
- Passaro VMN, Cuccovillo A, Vaiani L, De Carlo M, Campanella CE. Gyroscope technology and applications: a review in the industrial perspective. Sensors. 2017;17(10). https://doi.org/10.3390/s17102284
- Cheremisenov GV. A gyrocompass based on a rotating laser gyroscope: experience in the development and experimental results. Gyroscopy and Navigation. 2018;9:29-34. https://doi.org/10.1134/S2075108718010054
- Bolotnov AS. Application of the laser gyroscope in free-form inertial systems. Politechnical Student Journal. 2019;10(39). https://doi.org/10.18698/2541-8009-2019-10-533
- Corke P. Navigation. Robotics and Control. Cham: Springer; 2022. p. 123-147. https://doi.org/10.1007/978-3-030-79179-7_5
- Logashina IV, Chumachenko EN, Bober SA, Aksenov SA. Thermal stress state of a laser-gyroscope housing for use in space. Russian Engineering Research. 2009;29: 751-755. https://doi.org/10.3103/S1068798X09080012
- Azarova VV, Golyaev YD, Savelyev II. Zeeman laser gyroscopes. Quantum Electronics. 2015;45(2):171-179.
- Golyaev YD, Zapotylko NR, Nedzvetskaya AA, Sinelnikov AO, Tikhmenev NV. Laser gyros with increased time of continuous operation. Proceedings of the 18th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2011). St. Petersburg; 2011. p. 53.
- Golyaev YuD, Zapotylko NR, Nedzvetskaya AA, Sinelnikov AO. Thermally stable optical cavities for Zeeman laser gyroscopes. Optics and Spectroscopy. 2012;113(2): 227-229. https://doi.org/10.1134/S0030400X12070090
- Zubarev YA, Sinelnikov AO, Fetisova NE. A study of the temperature stability of the Zeeman laser gyro ring resonator. 2022 29th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE; 2022. p. 1-4. https://doi.org/10.23919/ICINS51784.2022.9815336
- Savvova OV, Bragina LL, Petrov DV, Topchii VL, Ryabinin SA. Technological aspects of the production of optically transparent glass ceramic materials based on lithium-silicate glasses. Glass and Ceramics. 2018;75:127-132. https://doi.org/10.1007/s10717-018-0041-6
- Kompan TA, Sharov AA. Monitoring of the uniformity of the thermal linear expansion coefficient of large-size optical components. Measurement Techniques. 2009;52:755. https://doi.org/10.1007/s11018-009-9345-9
- Filatov YD, Sidorko VI, Kovalev SV, Kovalev VA. Effect of the rheological properties of a dispersed system on the polishing indicators of optical glass and glass ceramics. Journal of Superhard Materials. 2021;43:65-73. https://doi.org/10.3103/S1063457621010032
- Wu F, Zhang M-H, Fu X, Guo X, Wang J-L, Wang J-X. Design of ac laser frequency stabilization system for space three-axis mechanical dithering laser gyro. Zhongguo Guanxing Jishu Xuebao. 2017;25(2):265-268.
- Cygan A, Lisak D, Masłowski P, Bielska K, Wójtewicz S, Domysławska J, Trawiński RS. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer. The Review of Scientific Instruments. 2011;82(6):063107. https://doi.org/10.1063/1.3595680
- Sinelnikov AO, Medvedev AA, Golyaev YD, Grushin ME, Chekalov DI. Thermal zero drifts in magneto-optical Zeeman laser. Gyroscopy and Navigation. 2021; 129(4):308-313. https://doi.org/10.1134/S2075108721040076
- Savelyev I, Sinelnikov A. The influence of the pumping current on the Zeeman laser rotation sensors output parameters. Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems (ICINS 2015). St. Petersburg; 2015. p. 421-424.
- Zubarev YA, Sinelnikov AO, Katkov AA. Contribution of structural elements to the temperature drift of the Zeeman laser angular velocity sensors perimeter. Fizicheskoe Obrazovanie v Vuzah. 2021;27(24):55-58. (In Russ.) https://doi.org/10.54965/16093143_2021_27_S4_55
- Soloveva T, Sinelnikov A, Kuznetsov E, Golyaev Y, Kolbas Y. Computer simulation of processes in the resonator length control system of the Zeeman laser gyro. Proceedings of the International Conference on Optoelectronic Information and Computer Engineering (OICE 2022), China, 15 August 2022 (vol. 12308). https://doi.org/10.1117/12.2645990
- Khandelwal A, Syed A, Nayak J. Mathematical model of semiconductor fiber ring laser gyroscope. Journal of Optics. 2017;46:8-15. https://doi.org/10.1007/s12596-016-0368-8
- Weng J, Bian X, Kou K, Lian T. Optimization of ring laser gyroscope bias compensation algorithm in variable temperature environment. Sensors. 2020;20(2):377. https://doi.org/10.3390/s20020377
- Liang H, Ren Q, Zhang D, Zhao X, Guo Y. The temperature compensation method for the laser gyro based on the relevance vector machine. In: Jia Y, Zhang W, Fu Y, Yu Z, Zheng S. (eds.) Proceedings of 2021 Chinese Intelligent Systems Conference. Singapore: Springer; 2022. p. 367-375. https://doi.org/10.1007/978-981-16-6328-4_39
- Li Y, Fu L, Wang L, He L, Li D. Laser gyro temperature error compensation method based on NARX neural network embedded into extended Kalman filter. In: Yan L, Duan H, Yu X. (eds.) Advances in Guidance, Navigation and Control. Singapore: Springer; 2022. p. 3309-3320.
- Semenov AS, Yakushev IA, Egorov AN. Modeling of technical systems in the MATLAB environment. Modern High-Tech Technologies. 2017;8:56-64. (In Russ.)
Дополнительные файлы
