Non-coplanar rendezvous in near-circular orbit with the use a low thrust engine

Cover Page

Cite item

Full Text

Abstract

Presented method allows one to calculate the of maneuvers performed on several turns using a low-thrust engine. These maneuvers ensure the flight of an active spacecraft within a given area of the target space object. The flight is carried out in the vicinity of a circular orbit. Simplified mathematical models of motion are used to solve this problem. The influence of the non-centrality of the gravitational field and atmosphere is not taken into account in the calculations. The process of determining the parameters of the maneuvers is divided into several stages: in the first and third stages, the parameters of the impulse transfer and the transfer carried out by the low-thrust engine are calculated using analytical methods. In the second stage, the distribution of maneuvering between turns, ensuring a successful solution to the meeting problem, is determined by changing one variable. This method is characterized by its simplicity and high reliability in determining the parameters of maneuvers, which makes it applicable on board a spacecraft. As part of the study, an analysis of the dependence of the total characteristic velocity of solving the meeting problem on the amount of engine thrust was also carried out. The maneuver parameters can be refined using an iterative procedure to take into account the main disturbances.

About the authors

Andrey A. Baranov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: andrey_baranov@list.ru
ORCID iD: 0000-0003-1823-9354
SPIN-code: 6606-3690

Candidate of Physical and Mathematical Sciences, Leading Researcher

Moscow, Russia

Adilson P. Olivio

RUDN University

Author for correspondence.
Email: pedrokekule@mail.ru
ORCID iD: 0000-0001-5632-3747

Postgraduate, Department of Mechanics and Control Processes, Academy of Engineering

Moscow, Russia

References

  1. Prussing JE. Optimal two- and three-impulse fixedtime rendezvous in the vicinity of a circular orbit. AIAA Journal. 1970;8(7):46-56. https://doi.org/10.2514/3.5876
  2. Marec J.P. Optimal space trajectories (vol. 1). Amsterdam, Oxford, New York: Elsevier Sci. Publ. Co.; 1979.
  3. Bulynin YuL. Ballistic support for orbital motion control of geostationary spacecraft at various stages of operation. System Analysis, Control and Navigation: Abstracts of Reports. Crimea, Yevpatoria; 2008. P. 73-74 ISBN 978-5-4465-3279-7. (In Russ.)
  4. Rylov YuP. Control of a spacecraft entering the satellite system using electric rocket engines. Kosmicheskie issledovaniya. 1985;23(5):691-700. (In Russ.)
  5. Kulakov AYu. Model and algorithms of reconfiguration of the spacecraft motion control system (dissertation of the candidate of Technical Sciences). St. Petersburg; 2017. (In Russ.)
  6. Tkachenko IS. Analysis of key technologies for creating multisatellite orbital constellations of small spacecraft. Ontology of Designing. 2021;11(4):478-499. https://doi.org/10.18287/2223-9537-2021-11-4-478-499
  7. Bazhinov IK, Gavrilov VP, Yastrebov VD, et al. Navigation support for the flight of the Salyut - 6Soyuz-Progress orbital complex. Moscow: Nauka Publ.; 1985. (In Russ.)
  8. Baranov A.A. Algorithm for calculating the parameters of four-impulse transitions between close almostcircular orbits. Cosmic Research. 1986;24(3):324-327.
  9. Lidov ML. Mathematical analogy between some optimal problems of trajectory corrections and selection of measurements and algorithms of their solution. Kosmicheskie Issledovaniya. 1971;9(5):687-706. (In Russ.)
  10. Gavrilov V, Obukhov E. Correction problem with fixed number of impulses. Kosmicheskie Issledovaniya.1980;18(2):163-172. (In Russ.)
  11. Lion PM, Handelsman M. Basis-vector for pulse trajectories with a given flight time. Rocket Technology and Cosmonautics. 1968;6(1):153-160. (In Russ.)
  12. Jezewski DJ, Rozendaal HL. An efficient method for calculating optimal free-space n-impulse trajectories. AIAA Journal. 1968;6(11):2160-2165. (In Russ.)
  13. Baranov AA. Geometric solution of the problem of a rendezvous on close nearly circular coplanar orbits. Cosmic Research. 1989;27(6):689-697.
  14. Baranov AA, Roldugin DS. Six-impulse maneuvers for rendezvous of spacecraft in near-circular non-coplanar orbits. Cosmic Research. 2012;50(6):441-448.
  15. Edelbaum TN. Minimum Impulse Transfer in the Vicinity of a Circular Orbit. Journal of the Astronautical Sciences. 1967;XIV(2):66-73.
  16. Lebedev VN. Calculation of the motion of a spacecraft with low thrust. Moscow: Publishing House of the USSR Academy of Sciences, 1968. (In Russ.)
  17. Grodzovsky GL, Ivanov YuN, Tokarev VV. Mechanics of low-thrust space flight. Moscow: Nauka Publ.; 1966. (In Russ.)
  18. Petukhov VG. Continuation method for optimization of low-thrust interplanetary trajectories. Cosmic Research. 2012;50(3):258-270. (In Russ.) EDN: OXXIVF
  19. Petukhov VG, Olívio AP. Optimization of the finite-thrust trajectory in the vicinity of a circular orbit. Advances in the Astronautical Sciences. 2021;174:5-15.
  20. Baranov AA. Maneuvering in the vicinity of a circular orbit. Moscow: Sputnik+ Publ.; 2016. (In Russ.)
  21. Ulybyshev YuP. Optimization of multi-mode rendezvous trajectories with constraints. Cosmic Research. 2008;46(2):133-145. (In Russ.)
  22. Ilyin VA, Kuzmak GE. Optimal flights of space-craft. Moscow: Nauka Publ.; 1976. (In Russ.)
  23. Baranov AA, Olivio AP. Coplanar multi-turn rendezvous in near-circular orbit using a low-thrust engine. RUDN Journal of Engineering Research. 2022; 23(4):283-292. http://doi.org/10.22363/2312-8143-2022-23-4-283-29
  24. Baranov A.A, de Prado AFB, Razumny VY., Baranov Jr.AA. Optimal low-thrust transfers between close near-circular coplanar orbits. Cosmic Research. 2011;49(3):269-279. https://doi.org/10.1134/S0010952511030014
  25. Clohessy WH, Wiltshire RS. Terminal Guidance System for Satellite Rendezvous. Journal of the Aero-space Sciences. 1960;27(9):653-678. https://doi.org/10.2514/8.8704
  26. Hill GW. Researches in Lunar Theory. American Journal of Mathematics. 1878;1:5-26.
  27. Elyasberg PE. Introduction to the theory of flight of artificial Earth satellites. Moscow: Nauka Publ.; 1965. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).