Technical Solution to Decrease Cavitation Effects in the Kaplan Turbine Blade

Cover Page

Cite item

Full Text

Abstract

Application of Kaplan turbines is widespread in low-water-head and large-capacity hydropower plants. An understanding of the failure mechanism of Kaplan Turbines is a key factor to provide useful solutions for their prevention or early treatment and to guarantee their workability. The long-term performance of Kaplan turbines depends on many factors such as cavitation, erosion, fatigue, and material defects. Cavitation in Kaplan turbines leads to flow instability, vibrations, surface damage, and reduce the machine performance. Therefore, this paper investigates the factors leading to cavitation in Kaplan turbine and presents practical solutions for it. Thermal-sprayed coatings are frequently applied due to their high wear resistance, cost effectiveness, weight reduction, and less negative impacts on base metal. Moreover, HVOF is used to create coatings with a high density and bonding strength. At high temperatures, cermet coatings, including nanoparticles, exhibit exceptional wear resistance. WC-based nanostructured and multifaceted coatings are utilized due to their high wear resistance. In addition, chromium carbide in WC-based coatings increases their oxidation and wear resistance.

About the authors

Mohammed Ridha W. Khalid

RUDN University

Email: 1042218144@rudn.ru
ORCID iD: 0009-0009-0798-4317

Ph.D. student, Department of Mechanical Engineering Technologies, Academy of Engineering

Moscow, Russia

Kazem Reza Kashyzadeh

RUDN University

Email: reza-kashi-zade-ka@rudn.ru
ORCID iD: 0000-0003-0552-9950

Candidate of Technical Sciences, Professor, Department of Transport, Academy of Engineering

Moscow, Russia

Siamak Ghorbani

RUDN University

Author for correspondence.
Email: gorbani-s@rudn.ru
ORCID iD: 0000-0003-0251-3144
SPIN-code: 8272-2337

Candidate of Technical Sciences, Associate Professor, Department of Mechanical Engineering Technologies, Academy of Engineering

Moscow, Russia

References

  1. Gordon JL. Hydraulic turbine efficiency. Canadian Journal of Civil Engineering. 2001;28(2):238-253. https://doi.org/10.1139/l00-10
  2. Fahmi ATWK, Kashyzadeh KR, Ghorbani S. A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants. Engineering Failure Analysis. 2022:106094. https://doi.org/10.1016/j.engfailanal.2022.106094
  3. Kashyzadeh KR, Kivi SA, Rynkovskaya M. Fatigue life assessment of unidirectional fibrous composite centrifugal compressor impeller blades based on FEA. International Journal of Emerging Technology and Advanced Engineering. 2016;7:6-11.
  4. Amiri N, Shaterabadi M, Reza Kashyzadeh K, Chizari M. A comprehensive review on design, monitoring, and failure in fixed offshore platforms. Journal of Marine Science and Engineering. 2021;9(12):1349. https://doi.org/10.3390/jmse9121349
  5. Rus T, Dular M, Širok B, Hočevar M, Kern I. An Investigation of the Relationship Between Acoustic Emission, Vibration, Noise, and Cavitation Structures on a Kaplan Turbine. Journal of Fluids Engineering. 2007; 129(9):1112-1122. https://doi.org/10.1115/1.2754313
  6. Cencîc T, Hocevar M, Sirok B. Study of Erosive Cavitation Detection in Pump Mode of Pump-Storage Hydropower Plant Prototype. Journal of Fluids Engineering. 2014;136(5):051301. https://doi.org/10.1115/1.4026476
  7. Xavier E, Eduard E, Mohamed F, Francois A., Miguel C. Detection of cavitation in hydraulic turbines. Mechanical Systems and Signal Processing. 2006;20(4): 983-1007. https://doi.org/10.1016/j.ymssp.2004.08.006
  8. Duraiselvam M, Galun R, Wesling V, Mordike BL, Reiter R, Oligmuller J. Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement. Surface and Coatings Technology. 2006;201(3-4):1289-1295. https://doi.org/10.1016/j.surfcoat.2006.01.054
  9. Farrahi GH, Chamani M, Kashyzadeh KR, Mostafazade A, Mahmoudi AH, Afshin H. Failure analysis of bolt connections in fired heater of a petrochemical unit. Engineering Failure Analysis 2018;92:327-342. https://doi.org/10.1016/j.engfailanal.2018.06.004
  10. Ming Z, David V, Carme V, Mònica E, Eduard E. Failure investigation of a Kaplan turbine blade. Engineering Failure Analysis 2019;97:690-700. https://doi.org/10.1016/j.engfailanal.2019.01.056
  11. Kumar P, Saini RP. Study of cavitation in hydro turbines - A review. Renewable and Sustainable Energy Reviews. 2010;14(1):374-383. https://doi.org/10.1016/j.rser.2009.07.024
  12. Farhat M, Bourdon P, Gagné JL, Remillard L. Improving hydro turbine profitability by monitoring cavitation aggressiveness. CEA Electricity ‘99 Conference and Exposition. Vancouver, March. 1999. p. 1-15.
  13. Karimi A, Avellan F. Comparison of erosion mechanisms in different types of cavitation. Wear. 1986; 113(3):305-322. https://doi.org/10.1016/0043-1648(86) 90031-1
  14. Shi H, Li Z, Bi Y. An On-line Cavitation Monitoring System for Large Kaplan Turbines. 2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA; 2007. https://doi.org/10.1109/PES.2007.385723
  15. Alligne S, Nicolet C, Allenbach P, Kawkabani B, Simond JJ, Avellan F. Influence of the vortex rope location of a Francis turbine on the hydraulic system stability. Proceedings of the 24th Symposium on Hydraulic Machinery and Systems, Foz do Iguassu, Brazil, October 27-31, 2008. http://doi.org/10.5293/IJFMS.2009.2.4.286
  16. Mohammad DA, Frengki MF. Cavitation Analysis of Kaplan-Series Propeller: Effect of Pitch Ratio and nProp using CFD. International Journal of Marine Engineering Innovation and Research. 2021;6(2): 114-124. http://doi.org/10.12962/j25481479.v6i2.8747
  17. White FM, Majdalani J. Viscous Fluid Flow. 4th ed. New York, NY: McGraw-Hill Education; 2021. 2021. 18. Brennen CE. Cavitation and bubble dynamics. UK: Cambridge University Press; 2013.
  18. Higuchi H, Arndt REA, Rogers MF. Characteristics of Tip Vortex Cavitation Noise. Journal of Fluids Engineering. 1989;111(4):495-501. https://doi.org/10.1115/1.3243674
  19. Chang N,Ganesh H, Yakushiji R, Ceccio SL. Tip Vortex Cavitation Suppression by Active Mass Injection. Journal of Fluids Engineering. 2011;133(11):111301. https://doi.org/10.1115/1.4005138
  20. Mohamed F, Francois A. On the detachment of a leading edge cavitation. Laboratory For Hydraulic Machines Swiss Federal Institute of Technology EPFLIMHEF-LMH. Av. De Cour, 33 CH-1006 Lausanne, Switzerland. 2014. Available from: https://caltechconf.library.caltech.edu/130/ (accessed: 02.05.2023)
  21. Sezen S, Atlar M. Mitigation of Hub Vortex Cavitation with Application of Roughness. Journal of Marine Science and Engineering. 2022;10:1426. https://doi.org/10.3390/jmse10101426
  22. Ghassemi H, Mardan A, Ardeshir A. Numerical analysis of hub effect on hydrodynamic performance of propellers with inclusion of pbcf to equalize the induced velocity. Polish Maritime Research. 2012;19:17-24. https://doi.org/10.2478/v10012-012-0010-x
  23. Jani DB, Mistry Y, Suthar M, Suthar A, Shah J, Patel P. An overview on cavitation in centrifugal pump. International Journal of Innovative Research in Technology. 2019;6(5):1-5.
  24. Pohl M, Stella J. Quantitative CLSM roughness study on early cavitation-erosion damage. Wear. 2002; 252(5-6):501-511. https://doi.org/10.1016/S0043-1648 (02)00003-0
  25. Leith WC. Cavitation damage of metals. Doctoral thesis. McGill University, Department of Mechanical Engineering; 1960.
  26. Mathias M, Göcke A, Pohl M. The residual stress, texture and surface changes in steel induced by cavitation. Wear. 1991;150(1-2):11-20. https://doi.org/ 10.1016/0043-1648(91)90302-B
  27. Ermolieff A, Amouroux A, Marthon S, Faviet JF, Peccoud L. XPS studies of contamination of reactor and silicon surfaces caused by reactive ion etching. Semiconductor Science and Technology. 1991;6(4):290-295. https://doi.org/10.1088/0268-1242/6/4/011
  28. Santis DP, Sette D, Wanderlingh F. Cavitation Detection: The Use of the Subharmonics. The Journal of the Acoustical Society of America. 1967;42(2):514-516. https://doi.org/10.1121/1.1910611
  29. Neppiras E. Measurement of acoustic cavitation. IEEE Transactions on Sonics and Ultrasonics. 1968; 15(2):81-88. https://doi.org/10.1109/T-SU.1968.29452
  30. Gyöngy M, Coussios CC. Passive cavitation mapping for localization and tracking of bubble dynamics. The Journal of the Acoustical Society of America. 2010;128(4):175-180. https://doi.org/10.1121/1.3467491
  31. Verhaagen B, Fernández RD. Measuring cavitation and its cleaning effect. Ultrasonics Sonochemistry. 2016;29:619-628. https://doi.org/10.1016/j.ultsonch.2015.03.009
  32. Čdina M. Detection of cavitation phenomenon in a centrifugal pump using audible sound. Mechanical Systems and Signal Processing. 2003;17(6):1335-1347. https://doi.org/10.1006/mssp.2002.1514
  33. Nandi S, Toliyat HA, Xiaodong L. Condition monitoring and fault diagnosis of electrical motors- a review. IEEE Transactions on Energy Conversion. 2005;20(4): 719-729. https://doi.org/10.1109/TEC.2005.847955
  34. Zhang M, Valentín D, Valero C, Egusquiza M, Egusquiza E. Failure investigation of Kaplan turbine blade. Engineering failure analysis. 2019;97:690-700. https://doi.org/10.1016/j.engfailanal.2019.01.056
  35. Mohanta RK, Chelliah TR, Allamsetty S, Akula A, Ghosh R. Sources of vibration and their treatment in hydro power stations-A review. Engineering Science and Technology, an International Journal. 2016;20(2):637-648. https://doi.org/10.1016/j.jestch.2016.11.004
  36. Alicja KK. Degradation and Protection of Materials from Cavitation Erosion: A Review. Materials. 2023;16(5):2058. https://doi.org/10.3390/ma16052058
  37. Kumar R, Bhandari S, Goyal A. Synergistic effect of Al2O3TiO2 reinforcements on slurry erosion performance of nickel-based composite coatings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2017;232(8): 974-986. https://doi.org/10.1177/1350650117736487
  38. Romero MC, Tschiptschin AP, Scandian C. Low temperature plasma nitriding of a Co30Cr19Fe alloy for improving cavitation erosion resistance. Wear. 2019;426-427:581-588. https://doi.org/10.1016/j.wear.2019.01.019
  39. Inspektor A, Salvador PA. Architecture of PVD coatings for metalcutting applications: a review. Surface and Coatings Technology. 2014;257:138-153. https:// doi.org/10.1016/j.surfcoat.2014.08.068
  40. Andrievski RA. Nanostructured superhard films as typical nanomaterials. Surface and Coatings Technology. 2007;201:6112-6116. https://doi.org/10.1016/j.surfcoat.2006.08.119
  41. Krella AK. Degradation of protective PVD coatings, In: Handbook of Materials Failure Analysis with Case Studies from the Chemicals, Concrete, and Power Industries. 1st ed. Makhlouf A.S.H., Mahmood A. Publisher: Elsevier; 2016. p. 411-440.
  42. Basak AK, Celis JP, Vardavoulias M, Matteazzi P. Effect of nanostructuring and Al alloying on friction and wear behaviour of thermal sprayed WC-Co coatings. Surface and Coatings Technology. 2012;206:3508-3516. https://doi.org/10.1016/j.surfcoat.2012.02.030

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».