Движение твердой гантели с маховиком в центральном гравитационном поле
- Авторы: Купреев С.А.1, Мельников В.М.1, Самусенко О.Е.1, Бондаренко Ю.А.1, Яблоновский П.А.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 23, № 2 (2022)
- Страницы: 83-96
- Раздел: Статьи
- URL: https://journals.rcsi.science/2312-8143/article/view/327489
- DOI: https://doi.org/10.22363/2312-8143-2022-23-2-83-96
- ID: 327489
Цитировать
Полный текст
Аннотация
Изложены теоретические исследования механики космического полета протяженного твердого тела типа гантель. Представлено описание общей качественной картины возможности реализации нереактивного принципа движения протяженного тела в центральном гравитационном поле. В строгом соответствии законам классической механики показан нереактивный принцип перемещения центра масс протяженного тела в центральном гравитационном поле, основанный на внутреннем перераспределении полного кинетического момента тела между кинетическими моментами центра масс тела и относительно центра масс тела. Изучена динамика гравилета Белецкого - Гирвица. Рассмотрены вопросы практической реализации нереактивного принципа движения, в том числе с точки зрения квантовой физики. Показано, что принцип движения, основанный на использовании спина низкоэнергетических элементарных частиц, эффективнее фотонной ракеты. В частности, применение спина гравитона для движения тел в миллиард раз эффективнее применения гравитона для реактивного движения и позволяет достигнуть ускорения телом более 6600 м/с2 без перегрузки. Полученные результаты могут быть использованы в экспериментах для поиска элементарных частиц с низкой энергией, объяснения космических феноменов и разработки транспортных объектов на новых физических принципах.
Ключевые слова
Об авторах
Сергей Алексеевич Купреев
Российский университет дружбы народов
Email: kupreev-sa@rudn.ru
ORCID iD: 0000-0002-8657-2282
доктор технических наук, профессор департамента механики и процессов управления, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Виталий Михайлович Мельников
Российский университет дружбы народов
Email: vitalymelnikov45@yandex.ru
ORCID iD: 0000-0002-2114-7891
академик Российской академии космонавтики имени К.Э. Циолковского и Международной академии информатизации, доктор технических наук, профессор департамента механики и процессов управления, Инженерная академия, Российский университет дружбы народов
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Олег Евгеньевич Самусенко
Российский университет дружбы народов
Email: samusenko@rudn.ru
ORCID iD: 0000-0002-8350-9384
кандидат технических наук, директор департамента инновационного менеджмента в отраслях промышленности, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Юрий Александрович Бондаренко
Российский университет дружбы народов
Email: 1032162828@rudn.ru
ORCID iD: 0000-0001-8639-7202
магистрант, департамент механики и процессов управления, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Павел Алексеевич Яблоновский
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: 1032160153@rudn.ru
ORCID iD: 0000-0002-3300-0723
магистрант, департамент механики и процессов управления, Инженерная академия
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Список литературы
- Dorfman YaG. World history of physics: from ancient times to the end of the 18th century. Moscow: LKI Publ.; 2010. (In Russ.)
- Etkin VA. About the possibility of creating “self-moving” devices. Problems of Science. 2019;(4(40)):6-16. (In Russ.)
- Tajmar M. Biefeld - Brown effect: misinterpretation of corona wind phenomena. AIAA Journal. 2004;42(2): 315-318. https://doi.org/10.2514/1.9095
- Tolchin VN. Inertsoid. Inertia forces as a source of translational motion. Perm; 1977. (In Russ.)
- Dubinsky MG. Why the Dina apparatus cannot fly. Technika - Molodezhi. 1963;(3):32. (In Russ.)
- Melnikov VP. Anomalous aircraft - transport of the future. Moscow: Buki Vedi Publ.; 2016. (In Russ.)
- Shawyer R. Second generation EmDrive propulsion applied to SSTO launcher and interstellar probe. Acta Astronaut. 2015;116:166-174. https://doi.org/10.1016/j.actaastro.2015.07.002
- Beletsky VV. Essays on the motion of cosmic bodies. 3rd ed. Moscow: LKI Publ.; 2009. (In Russ.)
- Beletsky VV, Levin EM. Dynamics of space cable systems. Moscow: Nauka Publ.; 1990. (In Russ.)
- Beletsky VV, Giverts ME. On the motion of a pulsating system in a gravitational field. Space Research. 1968:6(2):304-306. (In Russ.)
- Pirozhenko AV. Controlled motion of a bundle of two bodies in a Newtonian field of forces by changing the bond length. Space Research. 1990;304:473-482. (In Russ.)
- Okunev YuM. On the possible movements of a long dumbbell in the central field of forces. Space Research. 1969;7(5):637-642. (In Russ.)
- Okunev YuM. On the translational-rotational movement of a long dumbbell (dissertation of the Candidate of Physical and Mathematical Sciences). Moscow; 1971. (In Russ.)
- Razoumny YN, Kupreev SA. On the motion of bodies based on changes in the kinetic moment. RUDN Journal of Engineering Research. 2019;20(4):267-275. (In Russ.) http://doi.org/10.22363/2312-8143-2019-20-4-267-275
- Spencer DB, Razoumny YuN, Kupreev SA. Principle of motion based on the kinetic moment. Advances in the Astronautical Sciences. 2021;174:301-307.
- Murray CD, Dermott SF. Solar system dynamics. Cambridge University Press; 1999.
- Kupreev SA, Razoumny YuN. The concept of creating thrust based on change angular momentum. 2021. arXiv:2105.10775v6. https://doi.org/10.48550/arXiv.2105.10775
- Kumar SP, Plenio MB. On quantum gravity tests with composite particles. Nature Communications. 2020; 1:e3900. https://doi.org/10.1038/s41467-020-17518-5
- Wood BD, Stimpson GA, March JA, Lekhai YND, Stephen CJ, Green BL, Frangeskou AC, Ginés L, Mandal S, Williams ОA, Bose S, Morley GW. Matter and spin superposition in vacuum experiment (MASSIVE). 2021. arXiv:2105.02105.
- Tino GM. Testing gravity with cold atom interferometry: results and prospects. Quantum Science and Technology. 2021;6(2):024014. https://doi.org/10.1088/2058-9565/abd83e
- Westphal T, Hepach H, Pfaff J, Aspelmeyer M. Measurement of gravitational coupling between millimetre-sized masses. Nature. 2021;591(7849):225-228. https://doi.org/10.1038/s41586-021-03250-7
- Duan XC. Test of the universality of free fall with atoms in different spin orientations. Physical Review Letters. 2016;117(2):023001. https://doi.org/10.1103/PhysRevLett.117.023001
- Caravita R, Aghion S, Amsler C, Antonello M, Belov A, Bonomi G, Brusa RS, Caccia M, Camper A, Castelli F, Cerchiari G, Comparat D, Consolati G, Demetrio A, Di Noto L, Doser M, Evans C, Fani M, Ferragut R, Fesel J, Fontana A, Gerber S, Giammarchi M, Gligorova A, Guatieri F, Hackstock P, Haider S, Hinterberger A, Holmestad H, Kellerbauer A, Khalidova O, Krasnický D, Lagomarsino V, Lansonneur P, Lebrun P, Malbrunot C, Mariazzi S, Marton J, Matveev V, Muller SR, Nebbia G, Nedelec P, Oberthaler M, Pagano D, Penasa L, Petracek V, Prelz F, Prevedelli M, Rienäcker B, Robert J, Rohne OM, Rotondi A, Sandaker H, Santoro R, Smestad L, Sorrentino F, Testera G, Tietje I, Vujanovic M, Widmann E, Yzombard P, Zimmer C, Zmeskal J, Zurlo N. The AEgIS experiment at CERN: probing antimatter gravity. Nuovo Cimento C-Colloquia and Communications in Physics. 2019;42(2-3):123. https://doi.org/10.1393/ncc/i2019-19123-9
- Asenbaum P, Overstreet C, Kim M, Curti J, Kasevich MA. Atom-interferometric test of the equivalence principle at the 10-12 level. Physical Review Letters. 2020;125(19):191101. https://doi.org/10.1103/PhysRevLett.125.191101
- Provatidis CG. Free fall of a symmetrical gyroscope in vacuum. European Journal of Physics. 2021;42(6):065011. https://doi.org/10.1088/1361-6404/ac1e7b
- Abbott BP. Tests of general relativity with GW150914. Physical Review Letters. 2016;116(22):221101. https://doi.org/10.1103/PhysRevLett.116.2211011
- Cervantes-Cota J, Galindo-Uribarri S, Smoot G. A brief history of gravitational waves. Universe 2016;2(3):22. https://doi.org/10.3390/universe2030022
- Aleksandrov AB, Dashkina AB, Konovalova NS, Okateva NM, Polukhina NG, Starkov NI, Tioukov VE, Chernyavsky MM, ShchedrinaTV. Search for weakly interacting massive dark matter particles: state of the art and prospects. Uspekhi Fizicheskikh Nauk. 2021;191(9): 905-936. https://doi.org/10.3367/UFNr.2020.11.038872
- Anderson JD, Campbell JK, Ekelund JE, Ellis J, Jordan JF. Anomalous orbital-energy changes observed during spacecraft flybys of earth. Physical Review Letters. 2008;100(9):091102. https://doi.org/10.1103/PhysRevLett.100.091102
Дополнительные файлы
