An approach to access urban soils’ spatial variability at the local level

Cover Page

Cite item

Abstract

There is still lack of clear information on the urban soils mainly because of their extremely high spatial variability. In this study we analyzed the specific features of urban soils’ spatial variability at the local level (64 ha plot; 126 sampling points). Four contrast urban soil sub-types were distinguished in the study area: primitive urban soils on the technogenic parent material, grey-humus soils with urbopedogenensis features, urbanozems and urban soil on the layers of sewage accumulation. Comparison between the results of regional and local analysis did not show the trend of spatial variability decrease as a result of detailed elaboration. Thus it may be concluded that high spatial variability is an integral feature of urban soils, that assumes principally different approach for their spatial analysis.

About the authors

V I Vasenev

Peoples’ Friendship University of Russia

Email: vasenyov@mail.ru
Laboratory of agroecological monitoring, modeling and prediction of ecosystems

M M Fatiev

Peoples’ Friendship University of Russia

Email: vasenyov@mail.ru
Кафедра ландшафтной архитектуры и дизайна

P S Lakeev

Laboratory of agroecological monitoring, modeling and prediction of ecosystems

Email: burn_vessor@mail.ru

F A Ivannikov

Laboratory of agroecological monitoring, modeling and prediction of ecosystems

Email: ivannikovf@rambler.ru

- Valentini Ricardo

Tuscia University

Email: rik@unitus.it
Laboratory of agroecological monitoring, modeling and prediction of ecosystems

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).