The effect of Farnesol on sensitivity of microorganisms from bacterial-fungal biofilm to antimicrobial agents in vitro
- Authors: Sachivkina N.P.1, Nechet O.V.1, Gashimova I.S.1, Kondrateva D.V.1, Sakhno N.V.2
-
Affiliations:
- RUDN University
- Orel State Agrarian University named after N.V. Parakhin
- Issue: Vol 19, No 2 (2024)
- Pages: 370-382
- Section: Veterinary science
- URL: https://journals.rcsi.science/2312-797X/article/view/315820
- DOI: https://doi.org/10.22363/2312-797X-2024-19-2-370-382
- EDN: https://elibrary.ru/HBBYLN
- ID: 315820
Cite item
Full Text
Abstract
Two microorganisms — Staphylococcus aureus and Candida albicans isolated from a mixed bacterial-fungal biofilm of horse wound were studied. Resistance profile of these clinical strains to antimicrobial agents was determined using standard disc diffusion method on solid nutrient medium in the laboratory. Next, Farnesol was added to the disks at concentrations of 12.5…200 μM/ml (experiment) or physiologic saline solution (control). The experiments showed that in most cases addition of Farnesol increased sensitivity of microorganisms to antimicrobial drugs, and there were no cases of a negative effect of Farnesol on sensitivity. Moreover, the best results of synergism were observed in combination with antifungal drugs rather than with antibacterial drugs. There were also unique indicators: sensitivity of C. albicans to Nystatin and Miconazole doubled after the addition of Farnesol at a concentration of 25…200 µM/ml. Furthermore, it was proved that the clinical strain of S. aureus was completely resistant to penicillin. And sensitivity appeared after the addition of Farnesol. A similar situation was with the Candida strain: resistance to Amphotericin B was initially observed, and in combination with Farnesol, this drug began to work even in small concentrations. In vivo data indicate that Farnesol has an adjuvant effect in combination with most antibiotics and/or antifungal drugs.
About the authors
Nadezhda P. Sachivkina
RUDN University
Author for correspondence.
Email: sachivkina@yandex.ru
ORCID iD: 0000-0003-1100-929X
SPIN-code: 1172-3163
Candidate of Biological Sciences, Associate Professor, Department of Veterinary Medicine
8 Miklukho-Maklaya st., bldg. 2, Moscow, 117198, Russian FederationOksana V. Nechet
RUDN University
Email: nechet-ov@rudn.ru
ORCID iD: 0009-0002-3855-5653
head of the Microbiological Laboratory Center “Biochim”, deputy director of the Research Center “Nanotechnologies” of the Institute of Biochemical Technology and Nanotechnology
10 Miklukho-Maklaya st., bldg. 2, Moscow, 117198, Russian FederationIman S. Gashimova
RUDN University
Email: 1032220115@rudn.ru
ORCID iD: 0009-0004-0645-3980
SPIN-code: 3661-9354
Master student, Institute of Biochemical Technology and Nanotechnology
10 Miklukho-Maklaya st., bldg. 2, Moscow, 117198, Russian FederationDiana V. Kondrateva
Email: Diakondratieva@gmail.com
ORCID iD: 0009-0001-4387-8281
private equestrian veterinarian in Moscow and Moscow region, founder of the mobile equestrian hospital Moscow Equine Services
Moscow, Russian FederationNikolay V. Sakhno
Orel State Agrarian University named after N.V. Parakhin
Email: sahnoorelsau@mail.ru
ORCID iD: 0000-0002-3281-1081
SPIN-code: 5461-3191
Doctor of Veterinary Sciences, Associate Professor, Professor, Department of Epizootology and Therapy
69 Generala Rodina st., Orel, 302019, Russian FederationReferences
- Sachivkina N, Karamyan A, Semenova V, Ignatiev A, Abdurasulov A, Muratova R, et al. The Effects of Angelica ternata Extract from Kyrgyzstan on the Formation of Candida albicans ATСС 10231 Biofilms. Appl Sci. 2023;13(21):12042. doi: 10.3390/app132112042
- Kumar R, Das J, Rode S, Kaur H, Shah V, Verma P, et al. Farnesol dehydrogenase from Helicoverpa armigera (Hübner) as a promising target for pest management: molecular docking, in vitro and insect bioassay studies using geranylgeraniol as potential inhibitor. 3 Biotech. 2023;13(6):175. doi: 10.1007/s13205-023-03598-9
- Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–2992. doi: 10.1128/AEM.67.7.2982-2992.2001
- Ramage G, Saville SP, Wickes BL, Lopez-¬Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-¬sensing molecule. Appl Environ Microbiol. 2002;68(11):5459–5463. doi: 10.1128/aem.68.11.5459-5463.2002
- Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD. Farnesol-¬induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol. 2006;59(3):753–764. doi: 10.1111/j.1365-2958.2005.04976.x
- Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, et al. Farnesol-¬induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 2009;53(6):2392–2401. doi: 10.1128/AAC.01551-08
- Brasch J, Horter F, Fritsch D, Beck-¬Jendroschek V, Tröger A, Francke W. Acyclic sesquiterpenes released by Candida albicans inhibit growth of dermatophytes. Med Mycol. 2014;52(1):46–55. doi: 10.3109/13693786.2013.814174
- Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-¬Rizk MA, et al. In vitro interactions between farnesol and fluconazole, amphotericin B, or microfungin against Candida albicans biofilms. J Antimicrob Chemother. 2015;70(2):470–478. doi: 10.1093/jac/dku374
- Nagy F, Vitalis E, Jakab A, Borman AM, Forgacs L, Toth Z, et al. In vitro and in vivo effect of exogenous farnesol exposure against Candida auris. Front Microbiol. 2020;11:957. doi: 10.3389/fmicb.2020.00957
- Dekkerova J, Cernakova L, Kendra S, Borghi E, Ottaviano E, Willinger B, et al. Farnesol boosts the antifungal effect of fluconazole and modulates resistance in Candida auris through regulation of the CDR1 and ERG11 genes. J Fungi. 2022;8(8):783. doi: 10.3390/jof8080783
- Nikoomanesh F, Falahatinejad M, Cernakova L, dos Santos ALS, Mohammadi SR, Rafiee M, et al. Combination of farnesol with common antifungal drugs: inhibitory effect against Candida species isolated from women with RVVC. Medicina. 2023;59(4):743. doi: 10.3390/medicina59040743
- Lenchenko E, Sachivkina N, Petrukhina O, Petukhov N, Zharov A, Zhabo N, Avdonina M. Anatomical, pathological, and histological features of experimental respiratory infection of birds by biofilm-¬forming bacteria Staphylococcus aureus. Veterinary World. 2024;17(3):612–619. doi: 10.14202/vetworld.2024.612-619
- Jabra-¬Rizk MA, Meiller TF, James CE, Shirtliff ME. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother. 2006;50(4):1463–1469. doi: 10.1128/AAC.50.4.1463-1469.2006
- Inoue Y, Togashi N, Hamashima H. Farnesol-¬induced disruption of the Staphylococcus aureus cytoplasmic membrane. Biol Pharm Bull. 2016; 39(5):653–656. doi: 10.1248/bpb.b15-00416
- Wargo MJ, Hogan DA. Fungal-¬bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol. 2006;9(4):359–364. doi: 10.1016/j.mib.2006.06.001
- Kong EF, Tsui C, Kucharíková S, Van Dijck P, Jabra-¬Rizk MA. Modulation of Staphylococcus aureus response to antimicrobials by the Candida albicans quorum sensing molecule farnesol. Antimicrob Agents Chemother. 2017;61(12):e01573–17. doi: 10.1128/AAC.01573-17
- Boone CHT, Parker KA, Gutzmann DJ, Atkin AL, Nickerson KW. Farnesol as an antifungal agent: comparisons among MTLa and MTLα haploid and diploid Candida albicans and Saccharomyces cerevisiae. Front Physiol. 2023;14:1207567. doi: 10.3389/fphys.2023.1207567
- Erdal B, Baylan B, Batar B, Öztürk A, Topçu B. Investigation of the Effect of Farnesol on Biofilm Formation by Candida albicans and Candida parapsilosis complex isolates. Mikrobiyol Bul. 2024;58(1):49–62. doi: 10.5578/mb.20249905r
- Li T, Liu ZH, Fan LY, Zhang Z, Bai HH, Wang FJ, et al. The fungal quorum-¬sensing molecule, farnesol, regulates the immune response of vaginal epithelial cells against Candida albicans. BMC Microbiol. 2023;23(1):251. doi: 10.1186/s12866-023-02987-7
- Olabode IR, Sachivkina N, Karamyan A, Mannapova R, Kuznetsova O, Bobunova A, et al. In vitro activity of farnesol against Malassezia pachydermatis isolates from otitis externa cases in dogs. Animals. 2023;13(7):1259. doi: 10.3390/ani13071259
- Sachivkina N, Senyagin A, Podoprigora I, Vasilieva E, Kuznetsova O, Karamyan A, et al. Enhancement of the antifungal activity of some antimycotics by farnesol and reduction of Candida albicans pathogenicity in a quail model experiment. Veterinary World. 2022;15(4):848–854. doi: 10.14202/vetworld.2022.848-854
Supplementary files
