Spatial patterns of crops in Russia
- Authors: Savin I.Y.1,2, Avetyan S.A.1,3, Shishkonakova E.A.1, Zhogolev A.V.1
-
Affiliations:
- V.V. Dokuchaev Soil Science Institute
- RUDN University
- Lomonosov Moscow State University
- Issue: Vol 17, No 3 (2022)
- Pages: 263-286
- Section: Crop production
- URL: https://journals.rcsi.science/2312-797X/article/view/315626
- DOI: https://doi.org/10.22363/2312-797X-2022-17-3-263-286
- ID: 315626
Cite item
Full Text
Abstract
Information about spatial distribution of agricultural crops in Russia exists only in the form of statistical data aggregated at the level of regions or farms, which does not make it possible to obtain data about the actual distribution of crops. Attempts to use satellite data for mapping of individual crops have not yet been successful either. We have attempted to disaggregate statistical data on crop areas using map of ploughed soils in Russia, information on crop rotations, and assessment of suitability of land for cultivation of specific crops. An analysis was conducted for the 28 most common crops in Russia. Maps of the distribution of these crops in the country were constructed. The maps give an idea of the geography of crops in Russia and can be used to improve approaches to satellite mapping and monitoring of crop areas in the country.
Keywords
About the authors
Igor Y. Savin
V.V. Dokuchaev Soil Science Institute; RUDN University
Author for correspondence.
Email: savin_iyu@esoil.ru
ORCID iD: 0000-0002-8739-5441
Academician of the Russian Academy of Sciences, Doctor of Agricultural Sciences, Head of Department of Genesis, Geography, Classification and Digital Soil Mapping, V.V. Dokuchaev Soil Science Institute; Professor, Department of Environmental Management, Institute of Environmental Engineering, Peoples’ Friendship University of Russia
7/2 Pyzhyovskiy lane, Moscow, 119017, Russian Federation; 8 MiklukhoMaklaya st., Moscow, 117198, Russian FederationSergey A. Avetyan
V.V. Dokuchaev Soil Science Institute; Lomonosov Moscow State University
Email: avetyan-serg@mail.ru
ORCID iD: 0000-0002-3435-9092
Candidate of Biological Sciences, Senior Researcher, Department of Genesis, Geography, Classification and Digital Soil Mapping, V.V. Dokuchaev Soil Science Institute
7/2 Pyzhyovskiy lane, Moscow, 119017, Russian FederationEkaterina A. Shishkonakova
V.V. Dokuchaev Soil Science Institute
Email: shishkonakova_ea@esoil.ru
ORCID iD: 0000-0003-4396-2712
Candidate of Geographical Sciences, Senior Researcher, Department of Genesis, Geography, Classification and Digital Soil Mapping
7/2 Pyzhyovskiy lane, Moscow, 119017, Russian FederationArseny V. Zhogolev
V.V. Dokuchaev Soil Science Institute
Email: zhogolev_av@esoil.ru
ORCID iD: 0000-0003-2225-7037
Candidate of Agricultural Sciences, Researcher, Department of Genesis, Geography, Classification and Digital Soil Mapping
7/2 Pyzhyovskiy lane, Moscow, 119017, Russian FederationReferences
- Dessart FJ, Rommel J, Barreiro-Hurlé J, Thomas F, Rodríguez-Entrena M; Espinosa-Goded M, et al. Farmers and the new green architecture of the EU common agricultural policy: A behavioural experiment. EU European Commission, Joint Research Centre. Report number: 30706, 2021. doi: 10.2760/718383
- Santeramo FG, Ramsey AF. Crop Insurance in the EU: Lessons and Caution from the US. EuroChoices. 2017; 16(3):34-39. doi: 10.1111/1746-692X.12154
- Savin IY, Kozubenko IS. Possibilities of satellite data usage in agricultural insurances. RUDN Journal of Agronomy and Animal Industries. 2018; 13(4):336-343. doi: 10.22363/2312-797X-2018-13-4-336-343
- Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biology and Fertility of Soils. 2015; 51:897-911. doi: 10.1007/ s00374-015-1039-7
- OECD/FAO. OECD-FAO Agricultural Outlook 2021-2030. Paris, France: OECD Publishing; 2021. doi: 10.1787/19428846-en
- WFP Evaluation. WFP Evaluation Communications and Knowledge Management Strategy (2021-2026). Available from: https://docs.wfp.org/api/documents/WFP-0000128399/download/?_ga=2.267109641.664769273.1626092810-432516319.1626092810&_gac=1.224919144.1626092810.Cj0KCQjw0K-HBhDDARIsAFJ6UGiNZbBpPz4sh8mGodTBzmJiWKGy8qMHAnQyzwrrHyGgY5jLX1byW78aArdLEALw_wcB [Accessed 12 May 2022].
- FAO. Special Report- 2020 FAO/WFP Crop and Food Security Assessment Mission (CFSAM) to the Republic of South Sudan. FAO. Report number: 3/2021. doi: 10.4060/cb4498en
- Atzberger C. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing. 2013; 5:949-981. doi: 10.3390/rs5020949
- Rembold F, Atzberger C, Savin I, Rojas O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013; 5:1704-1733. doi: 10.3390/rs5041704
- Wu B, Meng J, Li Q, Yan N, Du X, Zhang M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. International Journal of Digital Earth. 2014; 7(2):113-137. doi: 10.1080/17538947.2013.821185.
- Ennouri K, Kallel A. Remote Sensing: An Advanced Technique for Crop Condition Assessment. Mathematical Problems in Engineering. 2019; 9404565. doi: 10.1155/2019/9404565
- Xue J, Su B. Signifi Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors. 2017; 1353691. doi: 10.1155/2017/1353691
- Zhang Y, Chipanshi A, Daneshfar B, Koiter L, Champagne C, Davidson A, et al. Effect of using crop specific masks on earth observation based crop yield forecasting across Canada. Remote Sensing Applications: Society and Environment. 2019; 13:121-137. doi: 10.1016/j.rsase.2018.10.002
- Miloserdov VV, Bespakhotny GV. Regional’noe planirovanie razvitiya sel’skogo khozyaistva [Regional planning of agricultural development]. Moscow: Ekonomika publ.; 1982. (In Russ.).
- Polyanskaya NA, Polyansky MV. Influence of climatic variations on manufacture of grain in the Russian Federation. Modern Problems of Science and Education. 2014; (5):383. (In Russ.).
- Federal State Statistics Service. Official Statistics. Available from: https://rosstat.gov.ru/folder/10705 [Accessed 12 May 2022]. (In Russ.).
- Earth Engine Data Catalog. FAO GAUL: Global Administrative Unit Layers 2015, Second-Level Administrative Units. Available from: https://developers.google.com/earth-engine/datasets/catalog/FAO_ GAUL_2015_level2 [Accessed 12 May 2022].
- Savin IY, Stolbovoy VS, Avetyan SA, Shishkonakova EA. Map of plowed soils of Russia. Dokuchaev Soil Bulletin. 2018; (94):38-56. doi: 10.19047/0136-1694-2018-94-38-56
- Ministry of Agriculture of the Russian Federation. Dokuchaev Soil Science Institute. Unique state registry of soil resources of Russia. Version 1.0. Collective monograph. Moscow; 2019. http://egrpr.esoil.ru Единый государственный реестр почвенных ресурсов России. Версия 1.0. Коллективная монография. Москва; 2019. http://egprr.esoil.ru
- FAO. A framework for land evaluation. FAO Soils bulletin 32. Rome: FAO; 1976.
- Ivanov AL, Savin IY, Egorov AV. Methodology of land resources assessment for agricultural production in Russia (at the example of hop cultivation). Dokuchaev Soil Bulletin. 2014; (73):29-94. (In Russ.). doi: 10.19047/0136-1694-2014-73-29-94
- Niklyaev VS. (ed.) Osnovy tekhnologii sel’skokhozyaistvennogo proizvodstva. Zemledelie i rastenievodstvo [Fundamentals of agricultural production technology. Farming and crop production]. Moscow: Bylina publ.; 2000. (In Russ.).
- University of Twente. Integrated Land and Water Information System (ILWIS). Available from: https://www.itc.nl/ilwis/ [Accessed 12 May 2022].
- Saraikin VA. Economic and structural changes in agricultural production in Russia for the period 2006-2016 (According to agricultural censuses). Economy of agricultural and processing enterprises. 2021; (1):16-23. (In Russ.). doi: 10.31442/0235-2494-2021-0-1-16-23
- Ivanov AL, Savin IY, Stolbovoy VS. The resource potential of Russian lands for crop farming. Doklady Akademii Nauk. 2017; 473(1):346-349. (In Russ.). doi: 10.7868/S 0869565217080175
- Tolpin VA, Balashov IV, Lupyan EA, Savin IY. «VEGA» Satellite-based service. Earth from Space. 2011; (9):32-37.
- Perez-Hoyos A, Rembold F, Kerdiles H, Gallego J. Comparison of global land cover datasets for cropland monitoring. Remote Sensing. 2017; 9(11):1118. doi: 10.3390/rs9111118
- Royer A, Genovese G. (eds.) Methodology of the MARS Crop Yield Forecasting System. Vol.3. Remote Sensing Information, Data Processing and Analysis. Luxembourg: OPOCE; 2004.
- Ozdogan M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sensing of Environment. 2010; 114(6):1190-1204. doi: 10.1016/j. rse.2010.01.006
- You L, Wood S, Wood-Sichra U. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems. 2009; 99(2-3):126-140. doi: 10.1016/j.agsy.2008.11.003
- You L, Wood S. An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems. 2006; 90(1-3):329-347. doi: 10.1016/j.agsy.2006.01.008
- Savin IY, Vernyuk YI, Isaev VA. Operative satellite monitoring of crops. Vestnik of the Russian agricultural science. 2014; (1):22-23. (In Russ.).
Supplementary files
