Cytokine profile in the synovial fluid of children with Legg-Calvé-Perthes disease and transient synovitis of the hip
- Authors: Shabaldin N.A.1, Kenis V.M.2, Kozhevnikov A.N.2, Kutikhin A.G.3, Shabaldin A.V.1,3
-
Affiliations:
- Kemerovo State Medical University
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Research Institute for Complex Issues of Cardiovascular Diseases
- Issue: Vol 31, No 4 (2025)
- Pages: 101-110
- Section: СLINICAL STUDIES
- URL: https://journals.rcsi.science/2311-2905/article/view/357898
- DOI: https://doi.org/10.17816/2311-2905-17756
- ID: 357898
Cite item
Abstract
Background. The nature of synovitis development in the early stages of Legg-Calvé-Perthes disease (LCPD), as well as certain aspects of the pathogenesis of subsequent osteodestructive processes, remains incompletely understood. A targeted approach to the treatment of the hip osteochondropathy should be based on an understanding of the dysregulation of osteogenesis at the molecular and cellular levels.
The aim of the study — to perform a comparative analysis of the concentrations of immunoregulatory molecules in the synovial fluid of patients with manifested Legg-Calvé-Perthes disease and those with transient synovitis of the hip.
Methods. This prospective case-control pilot study included two groups of children. We analyzed the concentrations of five mediators/chemokines/cytokines (CD40, MDC/CCL22, Fractalkine (CX3CL1), IP10/CXCL10, VEGF) in the synovial fluid of 42 children with transient synovitis of the hip (TSH), as well as in 26 children with stage II LCPD according to the Waldenström classification.
Results. The conducted study demonstrates differences in the nature of synovial inflammation with favorably occurring TSH and LCPD. The concentrations of regulatory molecules in synovial fluid depends on the predominant etiological factor and may influence the processes of osteoresorption and osteogenesis. Thus, changes in cytokine activity in patients with LCPD indicate the significance of disturbances in the coupling of angiogenesis and osteogenesis at the molecular and cellular levels. An increase in the concentration of phosphoprotein CD40, along with VEGF-induced glycoprotein proliferation, is associated with the activation of inflammation in vascular disorders. In the development of TSH, an increase in the level of cytokine IP10, which regulates the Th1 immune response, was observed.
Conclusions. In transient synovitis of the hip, the predominant factor is the immune-inflammatory response accompanied by activation of the chemokine system. The manifestation of Legg-Calvé-Perthes disease is associated with disturbances in the coupling of angiogenesis and osteogenesis at the molecular and cellular levels, as well as with increased expression of inflammatory mediators.
Full Text
##article.viewOnOriginalSite##About the authors
Nikita A. Shabaldin
Kemerovo State Medical University
Author for correspondence.
Email: shabaldin.nk@yandex.ru
ORCID iD: 0000-0001-8628-5649
SPIN-code: 6283-2581
Cand. Sci. (Med.), Associate Professor
Russian Federation, KemerovoVladimir M. Kenis
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
SPIN-code: 5597-8832
Dr. Sci. (Med.), Professor
Russian Federation, St. PetersburgAleksey N. Kozhevnikov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: infant_doc@mail.ru
ORCID iD: 0000-0003-0509-6198
SPIN-code: 1230-6803
Cand. Sci. (Med.)
Russian Federation, St. PetersburgAnton G. Kutikhin
Research Institute for Complex Issues of Cardiovascular Diseases
Email: antonkutikhin@gmail.com
ORCID iD: 0000-0001-8679-4857
SPIN-code: 4527-8939
Dr. Sci. (Med.)
Russian Federation, KemerovoAndrei V. Shabaldin
Kemerovo State Medical University; Research Institute for Complex Issues of Cardiovascular Diseases
Email: weit2007@yandex.ru
ORCID iD: 0000-0002-8785-7896
SPIN-code: 5281-0065
Dr. Sci. (Med.), Professor
Russian Federation, Kemerovo; KemerovoReferences
- Rodríguez-Olivas A.O., Hernández-Zamora E., Reyes-Maldonado E. Legg–Calvé–Perthes disease overview. Orphanet J Rare Dis. 2022;17(1):125. doi: 10.1186/s13023-022-02275-z.
- Шабалдин Н.А., Шабалдин А.В. Молекулярные основы этиологии и патогенеза болезни Легга – Кальве – Пертеса и перспективы таргетной терапии (обзор литературы). Ортопедия, травматология и восстановительная хирургия детского возраста. 2022;10(3):295-307. doi: 10.17816/PTORS101679. Shabaldin N.A., Shabaldin A.V. Molecular foundations of the etiology and pathogenesis of Legg-Calve-Perthes disease and prospects for targeted therapy: a literature review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(3):295-307. (In Russian). doi: 10.17816/PTORS101679.
- Мезен Н.И., Сидорович Э.К., Лихачев С.А., Квачева З.Б., Лобанок Е.С., Волотовский И.Д. Транскрипционный фактор, индуцируемый гипоксией (HIF-1), его биологическая роль и взаимодействие с системами функционирования клетки в условиях нормы и патологии. Весці Нацыянальнай акадэміі навук Беларусі. Серыя біялагічных навук. 2013;(4):116-123. Mezen N.I., Sidorovich E.K., Lihachev S.A., Kvacheva Z.B., Lobanok E.S., Volotovski I.D. Hypoxia-induced factor (HIF), its biological role and interaction with the systems of cell function under normal and pathological conditions. Proceedings of the National Academy of Sciences of Belarus. Biological series. 2013;(4):116-123. (In Russian).
- Жукова А.Г., Казицкая А.С., Сазонтова Т.Г., Михайлова Н.Н. Гипоксией индуцируемый фактор (HIF): структура, функции и генетический полиморфизм. Гигиена и санитария. 2019;98(7):723-728. doi: 10.18821/0016-9900-2019-98-7-723-728. Zhukova A.G., Kazitskaya A.S., Sazontova T.G., Mikhailova N.N. Hypoxia-inducible factor (HIF): structure, function, and genetic polymorphism. Hygiene and Sanitation. 2019;98(7):723-728. (In Russian). doi: 10.18821/0016-9900-2019-98-7-723-728.
- Piret J.P., Mottet D., Raes M., Michiels C. Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol. 2002;64(5-6):889-892. doi: 10.1016/S0006-2952(02)01155-3.
- An W.G., Kanekal M., Simon M.C., Maltepe E., Blagosklonny M.V., Neckers L.M. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392(6674):405-408. doi: 10.1038/32925.
- Yellowley C.E., Genetos D.C. Hypoxia signaling in the skeleton: implications for bone health. Curr Osteoporos Rep. 2019;17(1):26-35. doi: 10.1007/s11914-019-00500-6.
- Ren Y., Deng Z., Gokani V., Kutschke M., Mitchell T.W., Aruwajoye O. et al. Anti‐Interleukin‐6 Therapy Decreases Hip Synovitis and Bone Resorption and Increases Bone Formation Following Ischemic Osteonecrosis of the Femoral Head. J Bone Miner Res. 2021;36(2):357-368. doi: 10.1002/jbmr.4191.
- Shah K.N., Racine J., Jones L.C., Aaron R.K. Pathophysiology and risk factors for osteonecrosis. Curr Rev Musculoskelet Med. 2015;8(3):201-209. doi: 10.1007/s12178-015-9277-8.
- Герштейн Е.С., Тимофеев Ю.С., Зуев А.А., Кушлинский Н.Е. Лиганд-рецепторная система RANK/RANKL/OPG и ее роль при первичных новообразованиях костей (анализ литературы и собственные результаты). Успехи молекулярной онкологии. 2015: 2(3):51-59. Gershtejn E.S., Timofeev Yu.S., Zuev A.A., Kushlinskii N.E. RANK/RANKL/OPG ligand-receptor system and its role in primary bone neoplasms (literature analysis and own data). Advances in Molecular Oncology. 2015:2(3):51-59. (In Russian).
- Чумачева Ю.В., Сташкевич Д.С., Девальд И.В., Суслова Т.А. Однонуклеотидный полиморфизм остеопротегерина как возможный биомаркер ревматоидного артрита в башкирской популяции Челябинской области. Российский иммунологический журнал. 2023;26(4):521-526. doi: 10.46235/1028-7221-13964-SNP. Chumacheva Y.V., Stashkevich D.S., Devald I.V., Suslova T.A. Single nucleotide polymorphism of osteoprotegerin as a possible biomarker of rheumatoid arthritis in Bashkir population of Chelyabinsk region. Russian Journal of Immunology. 2023;26(4):521-526. (In Russian). doi: 10.46235/1028-7221-13964-SNP.
- Nouri A., Walmsley D., Pruszczynski B., Synder M. Transient synovitis of the hip: a comprehensive review. J Pediatr Orthop B. 2014;23(1):32-36. doi: 10.1097/BPB.0b013e328363b5a3.
- Барбараш О.Л., Осокина А.В. Роль маркеров системы CD40/CD40L в прогнозировании сердечно-сосудистых событий при коронарном атеросклерозе. Патология кровообращения и кардиохирургия. 2011;(3):89-93. Barbarash O.L., Osokina A.V. Role of CD40/CD40L markers in prognosing cardiovascular events in patients with coronary atherosclerosis. Circulation Pathology and Cardiac Surgery. 2011;(3):89-93. (In Russian).
- Luo H., Li L., Han S., Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: a review. Int J Immunogenet. 2024;51(3): 130-142. doi: 10.1111/iji.12664.
- Ren G., Al-Jezani N., Railton P., Powell J.N., Krawetz R.J. CCL22 induces pro-inflammatory changes in fibroblast-like synoviocytes. iScience. 2020;24(1):101943. doi: 10.1016/j.isci.2020.101943.
- Ahmed A.A., Hassan E.H., Elsayed H., Alhussiny A.M. Fractalkine (CX3CL1) as a Diagnostic Marker for Childhood Onset Systemic Lupus Erythematosus. Eur J Mol Clin Med. 2021;8(3):2453-2463.
- Pezeshkian F., Shahriarirad R., Mahram H. An overview of the role of chemokine CX3CL1 (Fractalkine) and CX3C chemokine receptor 1 in systemic sclerosis. Immun Inflamm Dis. 2024;12(10):e70034. doi: 10.1002/iid3.70034.
- Madhurantakam S., Lee Z.J., Naqvi A., Prasad S. Importance of IP-10 as a biomarker of host immune response: Critical perspective as a target for biosensing. Curr Res Biotechnol. 2023;5:100130. doi: 10.1016/j.crbiot.2023.100130.
- Enomoto N., Nakai S., Yazawa S., Mochizuka Y., Fukada A., Tanaka Y. et al. CXCL10 predicts autoimmune features and a favorable clinical course in patients with IIP: post hoc analysis of a prospective and multicenter cohort study. Respir Res. 2024;25(1):346. doi: 10.1186/s12931-024-02982-0.
- Zhan H., Li H., Liu C., Cheng L., Yan S., Li Y. Association of circulating vascular endothelial growth factor levels with autoimmune diseases: a systematic review and meta-analysis. Front Immunol. 2021;12:674343. doi: 10.3389/fimmu.2021.674343.
- Le T.H.V., Kwon S.M. Vascular endothelial growth factor biology and its potential as a therapeutic target in rheumatic diseases. Int J Mol Sci. 2021;22(10):5387. doi: 10.3390/ijms22105387.
- Kang M.S., Zimmerhanzel D., Haider S., Kwang-Woo Kim H. Early-stage femoral head hypoperfusion correlates with femoral head deformity at intermediate follow-up in Legg-Calvé-Perthes disease. J Bone Joint Surg Am. 2025;107(1):36-45. doi: 10.2106/JBJS.23.01429.
- Chong D.Y., Schrader T., Laine J.C., Yang S., Gilbert S.R., Kim H.K.W. et al. Reliability and validity of visual estimation of femoral head hypoperfusion on perfusion MRI in Legg-Calve-Perthes disease. J Pediatr Orthop. 2021;41(9):e780-e786. doi: 10.1097/BPO.0000000000001945.
- Светозарский Н.Л., Артифексова А.А., Светозарский С.Н. Фактор роста эндотелия сосудов: биологические свойства и практическое значение (обзор литературы). Journal of Siberian Medical Sciences. 2015;(5):24. Svetozarskiy N.L., Artifeksova A.A., Svetozarskiy S.N. Growth promoting factor of endothelium of vessels: biological properties and practical value (literature review). Journal of Siberian Medical Sciences. 2015;(5):24. (In Russian).
- Wagner A.H., Klersy A., Sultan C.S., Hecker M. Potential role of soluble CD40 receptor in chronic inflammatory diseases. Biochem Pharmacol. 2023;217:15858. doi: 10.1016/j.bcp.2023.115858.
- Шевченко О.П., Природова О.Ф., Шевченко А.О. Клиническое значение растворимого CD40 лиганда у больных ишемической болезнью сердца. Кардиоваскулярная терапия и профилактика. 2006;5(7):101-111. Shevchenko O.P., Prirodova O.F., Shevchenko A.O. Clinical value of soluble CD40 ligand in coronary heart disease patient. Cardiovascular Therapy and Prevention. 2006;5(7):101-111.
- Gillespie E.F., Raychaudhuri N., Papageorgiou K.I., Atkins S.J., Lu Y., Charara L.K. et al. Interleukin-6 production in CD40-engaged fibrocytes in thyroid-associated ophthalmopathy: involvement of Akt and NF-κB. Invest Ophthalmol Vis Sci. 2012;53(12):7746-7753. doi: 10.1167/iovs.12-9861.
- Gerdes N., Seijkens T., Lievens D., Kuijpers M.J., Winkels H., Projahn D. et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arterioscler Thromb Vasc Biol. 2016;36(3):482-490. doi: 10.1161/ATVBAHA.115.307074.
- Кожевников А.Н., Барсуков Д.Б., Губаева А.Р. Болезнь Легга – Кальве – Пертеса, протекающая с признаками остеоартрита: механизмы возникновения и перспективы консервативной терапии с применением бисфосфонатов. Ортопедия, травматология и восстановительная хирургия детского возраста. 2023;11(3):405-416. doi: 10.17816/PTORS456498. Kozhevnikov A.N., Barsukov D.B., Gubaeva A.R. Legg–Calvé–Perthes disease presenting with osteoarthritis: mechanisms of the development and prospects of conservative therapy using bisphosphonates. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(3):405-416. (In Russian). doi: 10.17816/PTORS456498.
- Mellado M., Martínez-Muñoz L., Cascio G., Lucas P., Pablos J.L., Rodríguez-Frade J.M. T cell migration in rheumatoid arthritis. Front Immunol. 2015;6:384. doi: 10.3389/fimmu.2015.00384.
- Al-Jaberi L., Simonds M.M., Brescia A.M.C. CCL24, CXCL9 and CXCL10 are increased in synovial fluid in patients with juvenile idiopathic arthritis requiring advanced treatment. Rheumatology (Oxford). 2023;62(7):2594-2600. doi: 10.1093/rheumatology/keac617.
Supplementary files


