Application of 3D Printing Technology in Minimally Invasive Pelvic Surgery

Cover Page

Cite item

Abstract

Background. Due to the technological progress in traumatology, there are more opportunities to apply MIPO (minimally invasive plate osteosynthesis) techniques for treating pelvic ring injuries. However, such problems as implant malposition due to complicated intraoperative visualization and the risks of postoperative complications remain relevant.

The aim of the study — to evaluate the effectiveness of 3D printing technology during preoperative planning and intraoperative navigation in minimally invasive surgery for pelvic injuries.

Methods. This study presents the experience of surgical treatment of 53 patients with various pelvic injuries using 3D technologies. The patients are divided into 3 groups depending on the location of injury: Group 1 — with isolated posterior pelvic ring injuries; Group 2 — with anterior and posterior pelvic ring injuries; Group 3 — with combined pelvic and acetabular injuries. The proposed technique involves the use of software to generate a digital model, 3D printing, conducting preoperative elaborate preparation on the plastic model, its sterilization and application as a navigation device during the operation for accurate positioning of metal fixators in intended directions.

Results. Five patients have dropped out of the study (3 foreigners, 1 patient was transferred to the psychosomatic department of related medical facility, 1 patient died as a result of pulmonary embolism at 1.5 months post-op). At the time of writing, 48 patients remained in the study: radiographic signs of fracture union were noted in 43 (90%) cases, in the remaining 5 (10%) cases, the follow-up period was less than the average fusion period (3 months). Among 43 patients with confirmed fracture union, the functional result 8 months after surgery according to the Majeed scale in Group 1 was 92 points, in Group 2 — 89 points, in Group 3 — 74 points. In 2 patients, after fracture union, screw migration associated with osteoporotic changes was observed in the posterior pelvis. No other complications were noted.

Conclusions. Accurate reduction and stable minimally invasive fixation of pelvic ring injuries, combined with 3D technologies, are of great importance for early rehabilitation of patients, especially given the morpho-anatomical variability of the pelvic bones. This approach reduces the incidence of implant malposition and helps to minimize long-term consequences of the injury. The conducted retrospective study demonstrated the relevance, safety, and reliability of 3D printing technology in enhancing the diagnosis and treatment of patients with pelvic bone injuries.

About the authors

Sergey V. Donchenko

Botkin Hospital; Pirogov Russian National Research Medical University

Author for correspondence.
Email: don_03@mail.ru
ORCID iD: 0000-0003-3341-7446

Cand. Sci. (Med.)

Russian Federation, Moscow; Moscow

Karen A. Egiazaryan

Pirogov Russian National Research Medical University

Email: egkar@mail.ru
ORCID iD: 0000-0002-6680-9334

Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Andrey A. Prokhorov

Botkin Hospital

Email: dr.prohorov.aa@yandex.ru
ORCID iD: 0000-0002-4130-1307
Russian Federation, Moscow

Aleksey V. Shabunin

Botkin Hospital

Email: glavbotkin@zdrav.mos.ru
ORCID iD: 0000-0002-0522-0681

Dr. Sci. (Med.), Professor, Full Member of the RAS

Russian Federation, Moscow

Alexander D. Rubtsov

Botkin Hospital

Email: alexRUB97@mail.ru
ORCID iD: 0009-0001-6066-3768
Russian Federation, Moscow

Alexander M. Nemnonov

Botkin Hospital

Email: anabolik177@yandex.ru
ORCID iD: 0009-0004-5595-3412
Russian Federation, Moscow

References

  1. Liaw C.Y., Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102. doi: 10.1088/1758-5090/aa7279.
  2. Иванов П.А., Заднепровский Н.Н., Неведров А.В., Каленский В.О. Внутрикостная фиксация переломов лонной кости штифтом с блокированием: первый клинический опыт. Травматология и ортопедия России. 2018;24(4):111-120. doi: 10.21823/2311-2905-2018-24-4-111-120. Ivanov P.A., Zadneprovsky N.N., Nevedrov A.V., Kalensky V.O. Pubic Rami Fractures Fixation by Interlocking Intramedullary Nail: First Clinical Experience. Traumatology and Orthopedics of Russia. 2018;24(4):111-120. (In Russian). doi: 10.21823/2311-2905-2018-24-4-111-120.
  3. Загородний Н.В., Солод Э.И., Кукса Д.Н., Абдулхабиров М.А., Петровский Р.А., Аганесов Н.А. и др. Мини-инвазивная фиксация лонного сочленения с применением транспедикулярной системы при множественных повреждениях таза. Вестник национального медико-хирургического Центра им. Н.И. Пирогова. 2022;17(2):119-124. doi: 10.25881/20728255_2022_17_2_119. Zagorodny N.V., Solod E.I., Kuksa D.N., Abdulhabirov M.A., Petrovsky R.A., Aganesov N.A. et al. Minimally invasive fixation of the pubic symphysis using a transpedicular system in case of polyfocal pelvic injury. Bulletin of Pirogov National Medical and Surgical Center. 2022;17(2):119-124. (In Russian). doi: 10.25881/20728255_2022_17_2_119.
  4. Егиазарян К.А., Старчик Д.А., Гордиенко Д.И., Лыско А.М. Современное состояние проблемы лечения пациентов с продолжающимся внутритазовым кровотечением вследствие нестабильных повреждений тазового кольца. Политравма. 2019;(1):75-81. Egiazaryan K.A., Starchik D.A., Gordienko D.I., Lysko A.M. Modern condition of problem of treatment of patients with ongoing intrapelvic bleeding after unstable pelvic ring injuries. Polytrauma. 2019;(1):75-81. (In Russian).
  5. Dienstknecht T., Berner A., Lenich A., Nerlich M., Fuechtmeier B. A minimally invasive stabilizing system for dorsal pelvic ring injuries. Clin Orthop Relat Res. 2011;469(11):3209-3217. doi: 10.1007/s11999-011-1922-y.
  6. Zhu L., Wang L., Shen D., Ye T.W., Zhao L.Y., Chen A.M. Treatment of pelvic fractures through a less invasive ilioinguinal approach combined with a minimally invasive posterior approach. BMC Musculoskelet Disord. 2015;16:167. doi: 10.1186/s12891-015-0635-x.
  7. Templeman D., Schmidt A., Freese J., Weisman I. Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res. 1996;(329): 194-198. doi: 10.1097/00003086-199608000-00023.
  8. Starr A.J., Nakatani T., Reinert C.M., Cederberg K. Superior pubic ramus fractures fixed with percutaneous screws: what predicts fixation failure? J Orthop Trauma. 2008;22(2):81-87. doi: 10.1097/BOT.0b013e318162ab6e.
  9. Mostert C.Q.B., Timmer R.A., Krijnen P., Meylearts S.A.G., Schipper I.B. Rates and risk factors of complications associated with operative treatment of pelvic fractures. Eur J Orthop Surg Traumatol. 2023;33(5):1973-1980. doi: 10.1007/s00590-022-03375-z.
  10. Kanakaris N.K., Giannoudis P.V. Pubic Rami fractures. In: Trauma and orthopaedic classifications: a comprehensive overview. London: Springer-Verlag; 2015. р. 275-276.
  11. Denis F., Davis S., Comfort T. Sacral fractures: an important problem. Retrospective analysis of 236 cases. Clin Orthop Relat Res. 1988;227:67-81.
  12. Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.C., Pujol S. et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magnetic Resonance Imaging. 2012; 30(9):1323-1341. doi: 10.1016/j.mri.2012.05.001.
  13. Roberts C.S., Pape H.C., Jones A.L., Malkani A.L., Rodriguez J.L., Giannoudis P.V. Damage control orthopaedics: evolving concepts in the treatment of patients who have sustained orthopaedic trauma. Instr Course Lect. 2005;54:447-462.
  14. Routt M.L. Jr., Kregor P.J., Simonian P.T., Mayo K.A. Early results of percutaneous iliosacral screws placed with the patient in the supine position. J Orthop Trauma. 1995;9:207-214. doi: 10.1097/00005131-199506000-00005.
  15. Giannoudis P.V., Tzioupis C.C., Pape H.C., Roberts C.S. Percutaneous fixation of the pelvic ring: an update. J Bone Joint Surg Br. 2007;89(2):145-154. doi: 10.1302/0301-620X.89B2.18551.
  16. Starr A.J., Walter J.C., Harris R.W., Reinert C.M., Jones A.L. Percutaneous screw fixation of fractures of the iliac wing and fracture-dislocations of the sacro-iliac joint (OTA Types 61-B2.2 and 61-B2.3, or Young-Burgess “lateral compression type II”pelvic fractures). J Orthop Trauma. 2002;16:116-123. doi: 10.1097/00005131-200202000-00008.
  17. Barei D.P., Shafer B.L., Beingessner D.M., Gardner M.J., Nork S.E., Routt M.C. The impact of open reduction internal fixation on acute pain management in unstable pelvic ring injuries. J Trauma. 2010;68:949-953. doi: 10.1097/TA.0b013e3181af69be.
  18. Bishop J.A., Routt M.L. Jr. Osseous fixation pathways in pelvic and acetabular fracture surgery:osteology, radiology, and clinical applications. J Trauma Acute Care Surg. 2012;72:1502-1509. doi: 10.1097/TA.0b013e318246efe5.
  19. Hinsche A.F., Giannoudis P.V., Smith R.M. Fluoroscopy-based multiplanar image guidance for insertion of sacroiliac screws. Clin Orthop Relat Res. 2002;(395): 135-144. doi: 10.1097/00003086-200202000-00014.
  20. Zwingmann J., Konrad G., Mehlhorn A.T., Südkamp N.P., Oberst M. Percutaneous iliosacral screw insertion: malpositioning and revision rate of screws with regards to application technique (navigated vs. conventional). J Trauma. 2010;69(6):1501-1506. doi: 10.1097/TA.0b013e3181d862db.
  21. Konrad G., Zwingmann J., Kotter E., Südkamp N., Oberst M. Variability of the screw position after 3D-navigated sacroiliac screw fixation. Influence of the surgeon’s experience with the navigation technique. Unfallchirurg. 2010;113(1):29-35. (In German). doi: 10.1007/s00113-008-1546-1.
  22. Balling H. 3D image-guided surgery for fragility fractures of the sacrum. Oper Orthop Traumatol. 2019;31(6):491-502. (In English). doi: 10.1007/s00064-019-00629-8.
  23. Liu F., Yu J., Yang H., Cai L., Chen L., Lei Q. et al. Iliosacral screw fixation of pelvic ring disruption with tridimensional patient-specific template guidance. Orthop Traumatol Surg Res. 2022;108(2):103210. doi: 10.1016/j.otsr.2022.103210.
  24. Chepelev L., Wake N., Ryan J., Althobaity W., Gupta A., Arribas E. et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018;4(1):11. doi: 10.1186/s41205-018-0030-y.
  25. Skelley N.W., Smith M.J., Ma R., Cook J.L. Three-dimensional Printing Technology in Orthopaedics. J Am Acad Orthop Surg. 2019;27(24):918-925. doi: 10.5435/JAAOS-D-18-00746.
  26. Cai L., Zhang Y., Chen C., Lou Y., Guo X., Wang J. 3D printing-based minimally invasive cannulated screw treatment of unstable pelvic fracture. J Orthop Surg Res. 2018;13(1):71. doi: 10.1186/s13018-018-0778-1.
  27. Horas K., Hoffmann R., Faulenbach M., Heinz S.M., Langheinrich A., Schweigkofler U. Advances in the Preoperative Planning of Revision Trauma Surgery Using 3D Printing Technology. J Orthop Trauma. 2020;34(5):e181-e186. doi: 10.1097/BOT.0000000000001708.
  28. Matta J.M., Saucedo T. Internal fixation of pelvic ring fractures. Clin Orthop Relat Res. 1989;(242):83-97.
  29. Wu S., Chen J., Yang Y., Chen W., Luo R., Fang Y. Minimally invasive internal fixation for unstable pelvic ring fractures: a retrospective study of 27 cases. J Orthop Surg Res. 2021;16(1):350. doi: 10.1186/s13018-021-02387-5.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Stages of 3D model creation: a — segmentation of DICOM files with isolation of pelvic bone structures in 3D Slicer software; b — post-processing of the obtained digital model in Autodesk Meshmixer software; c — preparation for 3D printing; d — printed on an FDM printer model from PLA plastic (polylactide)

Download (145KB)
3. Figure 2. Evaluation of accessibility and positioning of optimal safe bone corridors: a — visual control (green arrows indicate access points to safe bone spaces); b — X-ray control after surgery using the obtained 3D model

Download (76KB)
4. Figure 3. Photograph of 3D model of the pelvic bones with wires (a) introduced in the S1 body and X-ray images of their position (b)

Download (99KB)
5. Figure 4 (a). Process and result of using 3D model: a — model prepared for sterilization;

Download (111KB)
6. Figure 5. Intraoperative navigation: a — X-ray control; b — using a 3D model during surgery

Download (118KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».