Feasibility of Vibration Arthrometry in Hip Arthroplasty: A Review

Cover Page

Cite item

Full Text

Abstract

Background. In recent years, the attention of researchers to the diagnostic method based on acoustic or vibration emission (arthrometry) has increased. The method makes it possible to detect destructive changes in the bearing components of endoprosthesis, thereby predicting their early loosening and taking appropriate preventive measures.

The aim of the review is to analyse the degree of development of vibration arthrometry methods and its role in identifying early (pre-radiological) signs of loosening of endoprosthesis components and destructive changes in them (adverse events) after hip arthroplasty.

Methods. The information was searched in eLIBRARY, PubMed, Google Scholar, and Crossref electronic databases in Russian and English. The search was performed using the following keywords: acoustic emission, vibration arthrography, vibration arthrometry, hip joint, arthroplasty. The depth of the search: from 1990 to March 2024.

Results. A total of 34 literature sources were selected. None of the studied technologies was included in the number of generally accepted medical studies, since all have significant limitations, such as dependence on the density of soft tissues surrounding the endoprosthesis, the unresolved issue of the sensors location. Also, most of the technologies have not been tested in vivo, which would show their real potential for subsequent integration into the medical system. Nevertheless, most experimental studies have demonstrated a positive result in the diagnosis of loosening, destruction of the cement mantle and endoprosthesis components.

Conclusions. The advantage of vibration arthrometry as an independent diagnostic method is that it confirms loosening of endoprosthesis components, destruction of the cement mantle and ceramics at early stages before radiographic manifestations of ongoing processes.

About the authors

Baikozho R. Tashtanov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: b.tashtanov95@gmail.com
ORCID iD: 0000-0002-8553-9712
Russian Federation, Novosibirsk

Mikhail A. Rajfeld

Novosibirsk State Technical University

Author for correspondence.
Email: rajfeld@corp.nstu.ru
ORCID iD: 0000-0002-8826-4240

Dr. Sci. (Tech.)

Russian Federation, Novosibirsk

Vasily N. Vasyukov

Novosibirsk State Technical University

Email: vasyukov@corp.nstu.ru
ORCID iD: 0000-0001-5938-0368

Dr. Sci. (Tech.), Professor

Russian Federation, Novosibirsk

Vitaliy V. Pavlov

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: pavlovdoc@mail.ru
ORCID iD: 0000-0002-8997-7330

Dr. Sci. (Med.), Associate Professor

Russian Federation, Novosibirsk

Andrey A. Korytkin

Tsivyan Novosibirsk Research Institute of Traumatology and Orthopaedics

Email: andrey.korytkin@gmail.com
ORCID iD: 0000-0001-9231-5891

Cand. Sci. (Med.), Associate Professor

Russian Federation, Novosibirsk

References

  1. Шубняков И.И., Риахи А., Денисов А.О., Корыткин А.А., Алиев А.Г., Вебер Е.В. и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г. Травматология и ортопедия России. 2021;27(3):119-142. doi: 10.21823/2311-2905-2021-27-3-119-142. Shubnyakov I.I., Riahi A., Denisov A.O., Korytkin A.A., Aliyev A.G., Veber E.V. et al. The Main Trends in Hip Arthroplasty Based on the Data in the Vreden’s Arthroplasty Register from 2007 to 2020. Traumatology and Orthopedics of Russia. 2021;27(3):119-142. (In Russian). doi: 10.21823/2311-2905-2021-27-3-119-142.
  2. W-Dahl A., Kärrholm J., Rogmark C., Nåtman J., Bülow E., Ighani P. et al. The Swedish Arthroplasty Register Annual Report 2023. Available from: https://www.researchgate.net/publication/378941757_The_Swedish_Arthroplasty_Register_Annual_Report_2023. doi: 10.18158/JnKhp2Ru7.
  3. Karras K., Pullin R., Grosvenor R., Clarke A. Damage detection of a composite bearing liner using Acoustic Emission. BSSM 12th International Conference on Advances in Experimental Mechanics, Sheffield, UK, 21-31 August 2017. Available from: https://orca.cardiff.ac.uk/id/eprint/104596.
  4. Olorunlambe K.A., Shepherd D.E.T., Dearn K.D. A review of acoustic emission as a biotribological diagnostic tool. Tribol - Mater Surf In. 2019;13(3):161-171. doi: 10.1080/17515831.2019.1622914.
  5. Ramachandran R.A., Chi S.W., Srinivasa P.P., Foucher K., Ozevin D., Mathew M.T. Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis – Review of literature and in vitro case study. Med Biol Eng Comput. 2023;61(6):1239-1255. doi: 10.1007/s11517-023-02779-1.
  6. Lee C., Zhang L., Morris D., Cheng K.Y., Ramachandran R.A., Barba M. et al. Non-invasive early detection of failure modes in total hip replacements (THR) via acoustic emission (AE). J Mech Behav Biomed Mater. 2021;118:104484. doi: 10.1016/j.jmbbm.2021.104484.
  7. Kernohan W.G., Beverland D.E., McCoy G.F., Hamilton A., Watson P., Mollan R. Vibration arthrometry. A preview. Acta Orthop Scand. 1990;61(1):70-79. doi: 10.3109/17453679008993071.
  8. Abbott S.C., Cole M.D. Vibration arthrometry: a critical review. Crit Rev Biomed Eng. 2013;41(3):223-242. doi: 10.1615/critrevbiomedeng.2014010061.
  9. Kapur R.A. Acoustic emission in orthopaedics: A state of the art review. J Biomech. 2016;49(16):4065-4072. doi: 10.1016/j.jbiomech.2016.10.038.
  10. Olorunlambe K.A., Hua Z., Shepherd D.E., Dearn K.D. Towards a Diagnostic Tool for Diagnosing Joint Pathologies: Supervised Learning of Acoustic Emission Signals. Sensors (Basel). 2021;21(23):8091. doi: 10.3390/s21238091.
  11. Nsugbe E., Olorunlambe K., Dearn K. On the Early and Affordable Diagnosis of Joint Pathologies Using Acoustic Emissions, Deep Learning Decompositions and Prediction Machines. Sensors (Basel). 2023;23(9):4449. doi: 10.3390/s23094449.
  12. Таштанов Б.Р., Кирилова И.А., Павлова Д.В., Павлов В.В. «Шум керамики» как нежелательное явление в эндопротезировании тазобедренного сустава. Гений ортопедии. 2023;29(5):565-573. doi: 10.18019/1028-4427-2023-29-5-565-573. Tashtanov B.R., Kirilova I.A., Pavlova D.V., Pavlov V.V. Ceramic-related noise as an adverse outcome in total hip аrthroplasty. Genij Ortopedii. 2023;29(5):565-573. (In Russian). doi: 10.18019/1028-4427-2023-29-5-565-573.
  13. Nevalainen M.T., Veikkola O., Thevenot J., Tiulpin A., Hirvasniemi J., Niinimäki J. et al. Acoustic emissions and kinematic instability of the osteoarthritic knee joint: comparison with radiographic findings. Sci Rep. 2021;11(1):19558. doi: 10.1038/s41598-021-98945-2.
  14. Schwalbe H.J., Bamfaste G., Franke R.P. Non-destructive and non-invasive observation of friction and wear of human joints and of fracture initiation by acoustic emission. Proc Inst Mech Eng H. 1999;213(1):41-48. doi: 10.1243/0954411991534799.
  15. Rodgers G.W., Young J.L., Fields A.V., Shearer R.Z., Woodfield T.B., Hooper G.J. et al. Acoustic Emission Monitoring of Total Hip Arthroplasty Implants. IFAC Proceedings Volumes. 2014;47(3):4796-4800. doi: 10.3182/20140824-6-ZA-1003.00928.
  16. Rodgers G.W., Welsh R., King L.J., FitzPatrick A.J., Woodfield T.B., Hooper G.J. Signal processing and event detection of hip implant acoustic emissions. Control Engineering Practice. 2017;58:287-297. doi: 10.1016/j.conengprac.2016.09.013.
  17. FitzPatrick A.J., Rodgers G.W., Hooper G.J., Woodfield T.B. Biomedical Signal Processing and Control Development and validation of an acoustic emission device to measure wear in total hip replacements in-vitro and in-vivo. Biomed Signal Process Control. 2017;33:281-288. doi: 10.1016/j.bspc.2016.12.011.
  18. Roffe L., FitzPatrick A.J., Rodgers G.W., Woodfield T.B., Hooper G.J. Squeaking in ceramic-on-ceramic hips: No evidence of contribution from the trunnion morse taper. J Orthop Res. 2017;35(8):1793-1798. doi: 10.1002/jor.23458.
  19. Yamada. Y., Wakayama S., Ikeda J., Miyaji F. Fracture analysis of ceramic femoral head in hip arthroplasty based on microdamage monitoring using acoustic emission. J Mater Sci. 2011;46:6131-6139. doi: 10.1007/s10853-011-5578-5.
  20. Wakayama S., Jibiki T., Ikeda J. Quantitative detection of microcracks in bioceramics by acoustic emission source characterization. J Acoustic Emission. 2006;24:173-179.
  21. Khan-Edmundson A., Rodgers G.W., Woodfield T.B.F., Hooper G.J., Chase J.G. Tissue Attenuation Characteristics of Acoustic Emission Signals for Wear and Degradation of Total Hip Arthroplasty Implants. IFAC Proceedings Vol. 2012;45(18):355-360. doi: 10.3182/20120829-3-HU-2029.00046.
  22. Glaser D., Komistek R.D., Cates H.E., Mahfouz M.R. Clicking and squeaking: in vivo correlation of sound and separation for different bearing surfaces. J Bone Joint Surg Am. 2008;90 Suppl 4:112-120. doi: 10.2106/JBJS.H.00627.
  23. Glaser D., Komistek R.D., Cates H.E., Mahfouz M.R. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions. J Biomech. 2010;43(3):426-432. doi: 10.1016/j.jbiomech.2009.10.005.
  24. Kummer F.J., Jaffe W.L. Feasibility of using ultrasonic emission for clinical evaluation of prosthetic hips. Bull NYU Hosp Jt Dis. 2010;68(4):262-262.
  25. Rowland C., Browne M., Taylor A. Dynamic health monitoring of metal-on-metal hip prostheses using acoustic emission. 26th European conference on acoustic emission testing. 2004. Available from: https://www.ndt.net/article/ewgae2004/pdf/l45rowland.pdf.
  26. Gao X.J., Murota K., Tomita Y., Ono M., Higo Y., Nunomura S. Evaluation of the Fixation of Artificial Hip Joint by Acoustic Emission. Jpn J Appl Phys. 1990;29(S1):215. doi: 10.7567/JJAPS.29S1.215.
  27. Paech A., Cabrera-Palacios H., Schulz A.P., Kiene J., Wenzl M. E., Jurgens C. Acoustic tests on hip prosthesis models using frequency resonance monitoring (FRM). Res J Med Sci. 2008;2(2):82-91.
  28. Georgiou A.P., Cunningham J.L. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin Biomech (Bristol, Avon). 2001;16(4):315-323. doi: 10.1016/s0268-0033(01)00002-x.
  29. Unger A.C., Cabrera-Palacios H., Schulz A.P., Jürgens Ch., Paech A. Acoustic monitoring (RFM) of total hip arthroplasty — Results of a cadaver study. Eur J Med Res. 2009;14(6):264-271. doi: 10.1186/2047-783x-14-6-264.
  30. Alshuhri A.A., Holsgrove T.P., Miles A.W., Cunningham J.L. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements. Med Eng Phys. 37(8):739-745. doi: 10.1016/j.medengphy.2015.05.012.
  31. Alshuhri A.A., Holsgrove T.P., Miles A.W., Cunningham J.L. Non-invasive vibrometry-based diagnostic detection of acetabular cup loosening in total hip replacement (THR). Med Eng Phys. 2017;48:188-195. doi: 10.1016/j.medengphy.2017.06.037.
  32. Rieger J.S., Jaeger S., Schuld C., Kretzer J.P., Bitschi G.R. A vibrational technique for diagnosing loosened total hip endoprostheses: an experimental sawbone study. Med Eng Phys. 2013;35(3):329-337. doi: 10.1016/j.medengphy.2012.05.007.
  33. Rieger J.S., Jaeger S., Kretzer J.P., Rupp R., Bitsch R.G. Loosening detection of the femoral component of hip prostheses with extracorporeal shockwaves: a pilot study. Med Eng Phys. 2015;37(2):157-164. doi: 10.1016/j.medengphy.2014.11.011.
  34. Davies J.P., Tse M.K., Harris W.H. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound. J Arthroplasty. 1996;11(5):594-601. doi: 10.1016/s0883-5403(96)80115-x.
  35. Roques A., Browne M., Thompson J., Rowland C., Taylor A. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique. Biomaterials. 2004;25(5):769-778. doi: 10.1016/s0142-9612(03)00581-7.
  36. Qi G., Li J., Mann K.A., Mouchon W.P., Hamstad M.A., Salehi A. et al. 3D real time methodology monitoring cement failures in THA. J Biomed Mater Res A. 2004;71(3):391-402. doi: 10.1002/jbm.a.30133.
  37. Browne M., Jeffers J.R., Saffari N. Nondestructive evaluation of bone cement and bone cement/metal interface failure. J Biomed Mater Res B Appl Biomater. 2010;92(2):420-429. doi: 10.1002/jbm.b.31530.
  38. Li P.L., Jones N.B., Gregg P.J. Vibration analysis in the detection of total hip prosthetic loosening. Med Eng Phys. 1996;18(7):596-600. doi: 10.1016/1350-4533(96)00004-5.
  39. Rosenstein A.D., McCoy G.F., Bulstrode C.J., McLardy-Smith P.D., Cunningham J.L., Turner-Smith A.R. The differentiation of loose and secure femoral implants in total hip replacement using a vibrational technique: an anatomical and pilot clinical study. Proc Inst Mech Eng H. 1989;203(2):77-81. doi: 10.1243/PIME_PROC_1989_203_014_01.
  40. Rowlands A., Duck F.A., Cunningham J.L. Bone vibration measurement using ultrasound: application to detection of hip prosthesis loosening. Med Eng Phys. 2008; 30(3):278-284. doi: 10.1016/j.medengphy.2007.04.017.
  41. Lannocca M., Varini E., Cappello A., Cristofolini L., Bialoblocka E. Intra-operative evaluation of cementless hip implant stability: a prototype device based on vibration analysis. Med Eng Phys. 2007;29(8):886-894. doi: 10.1016/j.medengphy.2006.09.011.
  42. Varini E., Bialoblocka-Juszczyk E., Lannocca M., Cappello A., Cristofolini L. Assessment of implant stability of cementless hip prostheses through the frequency response function of the stem – bone system. Sensors Actuators A Phys. 2010;163(2):526-532. doi: 10.1016/j.sna.2010.08.029.
  43. Pastrav L.C., Jaecques S.V., Jonkers I., Perre G.V., Mulier M. In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. J Orthop Surg Res. 2009;4:10. doi: 10.1186/1749-799X-4-10.
  44. Pechon P.H., Pullin R., Eaton M.J., Jones S.A. Acoustic emission technology can warn of impending iatrogenic femur fracture during femoral canal preparation for uncemented hip replacement. A cadaveric animal bone study. J Med Eng Technol. 2018;42(2):72-87. doi: 10.1080/03091902.2017.1411986.
  45. Якупов Р.Р., Астанин В.В., Каюмова Э.З., Минасов Б.Ш., Минасов Т.Б. Оптимизация бесцементной артропластики тазобедренного сустава на основе акустического анализа. Российский журнал биомеханики. 2017;21(1):102-112. doi: 10.15593/RZhBiomeh/2017.1.09. Yakupov R.R., Astanin V.V., Kayumova E.Z., Minasov B.Sh., Minasov T.B. Optimization of cement-free hip arthroplasty based on acoustic analysis. Russian Journal of Biomechanics. 2017;21(1):102-112. (In Russian). doi: 10.15593/RZhBiomeh/2017.1.09.
  46. Wei J.C., Crezee W.H., Jongeneel H., De Haas T.S., Kool W.L., Blaauw B.J. et al. Using Acoustic Vibrations as a Method for Implant Insertion Assessment in Total Hip Arthroplasty. Sensors (Basel). 2022;22(4):1609. doi: 10.3390/s22041609.
  47. Goossens Q., Leuridan S., Henyš P., Roosen J., Pastrav L., Mulier M. et al. Development of an acoustic measurement protocol to monitor acetabular implant fixation in cementless total hip Arthroplasty: A preliminary study. Med Eng Phys. 2017;49:28-38.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. A schematic diagram demonstrating the principle of vibration arthrometry (VA): as a result of acetabular component material degradation (polyethylene, ceramics) (A) and force applied (load during walking) to the head of femoral component (B), acoustic stress voltage waves (C) arise, propagating to the acoustic emission sensor (D). Then, in the sensor, the acoustic wave is converted into electrical signals and transmitted to device (P), in which it is recorded, stored and, when transmitted to any medium (electronic, etc.), displayed as graphs (E)

Download (36KB)
3. Figure 2. A schematic diagram of the converted acoustic emission signal: R (Rise time) — interval between the first exceeding of the envelope threshold and its maximum; D (Duration) — duration or interval between the first and the last crossings of the envelope threshold; P (Peak amplitude) — amplitude characterizing the defect size; C (Counts) — number of impulses in the registered signal; Hit — group of acoustic emission impulses exceeding the specified threshold values

Download (44KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».