Morphological Assessment of Osseointegration of Titanium Implants with Ag- and Zn-Containing Calcium Phosphate Coatings
- Authors: Maiborodin I.V.1, Maiborodina V.I.1, Sheplev B.V.1, Sharkeev Y.P.2, Sedelnikova M.B.2, Pavlov V.V.3, Bazlov V.A.3, Anastasieva E.A.3, Efimenko M.V.3, Kirilova I.А.3, Korytkin A.A.3
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine
- Institute of Strength Physics and Materials Science
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
- Issue: Vol 31, No 1 (2025)
- Pages: 85-97
- Section: Theoretical and experimental studies
- URL: https://journals.rcsi.science/2311-2905/article/view/287981
- DOI: https://doi.org/10.17816/2311-2905-17604
- ID: 287981
Cite item
Full Text
Abstract
Background. The condition of the implant surface plays an important role in extending the service life of implants and metal structures in the human body.
The aim of the study — to assess the effect of titanium implants with Ag- or Zn-containing calcium phosphate coatings on the surrounding bone tissue in experimental study.
Methods. Using light microscopy, we studied the condition of bone tissue in the proximal tibia (PT) of rabbits 4 weeks after the implantation of 3D-printed titanium cone-shaped implants with Ag- or Zn-containing calcium phosphate coating.
Results. In all cases, 3D-printed titanium implants with a rough surface integrated in the PT adhered very tightly to the bone tissue, the edges of which had minor cicatricial changes. Removal of the implants was difficult, and many tissue fragments remained on their surface. Small foreign fragments were present in the bone tissue samples examined. The sizes of foreign fragments were smaller after the use of silver ions, compared to the use of zinc ions, in both compact and cancellous bone by 84.4% (9.50±4.17 vs 17.78±7.95 μm) and 87.2% (11.21±10.68 vs 20.67±8.08 μm), respectively. In cancellous bone, the average diameter of the fragment groups and the average distance between the coating fragments or their groups were not statistically significantly different. In compact bone, they were 59.1% (155±35.98 vs 246.67±39.62 μm) and 21.2% (253.04±44.87 vs 308±50.85 μm) larger, respectively, after application of the Zn-containing coating.
Conclusions. Surface-modified titanium implants have demonstrated a tendency to osseointegration, even when the coating is damaged with the formation of foreign fragments migrating into the surrounding tissues. It is possible that modifying the technique and modes of coating application, as well as varying their thickness, will enable the full realization of the positive properties of the modified surface, including the beneficial antimicrobial characteristics of silver and zinc.
Full Text
##article.viewOnOriginalSite##About the authors
Igor V. Maiborodin
Institute of Chemical Biology and Fundamental Medicine
Email: imai@mail.ru
ORCID iD: 0000-0002-8182-5084
Dr. Sci. (Med.), Professor
Russian Federation, NovosibirskVitalina I. Maiborodina
Institute of Chemical Biology and Fundamental Medicine
Email: imai@mail.ru
ORCID iD: 0000-0002-5169-6373
Dr. Sci. (Med.)
Russian Federation, NovosibirskBoris V. Sheplev
Institute of Chemical Biology and Fundamental Medicine
Email: imai@mail.ru
ORCID iD: 0009-0008-4140-3531
Dr. Sci. (Med.)
Russian Federation, NovosibirskYuri P. Sharkeev
Institute of Strength Physics and Materials Science
Email: sharkeev@ispms.ru
ORCID iD: 0000-0001-5037-245X
Dr. Sci. (Phys.-Math.), Professor
Russian Federation, TomskMariya B. Sedelnikova
Institute of Strength Physics and Materials Science
Email: smasha5@yandex.ru
ORCID iD: 0000-0002-5741-6053
Dr. Sci. (Tech.), Associate Professor
Russian Federation, TomskVitaliy V. Pavlov
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: pavlovdoc@mail.ru
ORCID iD: 0000-0002-8997-7330
Dr. Sci. (Med.), Associate Professor
Russian Federation, NovosibirskVyacheslav A. Bazlov
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: sbazlov@yandex.ru
ORCID iD: 0000-0001-8982-5516
Cand. Sci. (Med.)
Russian Federation, NovosibirskEvgeniya A. Anastasieva
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: evgeniya.anastasieva@gmail.com
ORCID iD: 0000-0002-9329-8373
Russian Federation, Novosibirsk
Maxim V. Efimenko
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: pavlovdoc@mail.ru
ORCID iD: 0000-0003-1516-7877
Russian Federation, Novosibirsk
Irina А. Kirilova
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Author for correspondence.
Email: irinakirilova71@mail.ru
ORCID iD: 0000-0003-1911-9741
Dr. Sci. (Med.), Associate Professor
Russian Federation, NovosibirskAndrey A. Korytkin
Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: andrey.korytkin@gmail.com
ORCID iD: 0000-0001-9231-5891
Cand. Sci. (Med.), Associate Professor
Russian Federation, NovosibirskReferences
- Velasco-Ortega E., Alfonso-Rodríguez C.A., Monsalve-Guil L., España-López A., Jiménez-Guerra A., Garzón I. et al. Relevant aspects in the surface properties in titanium dental implants for the cellular viability. Mater Sci Eng C Mater Biol Appl. 2016;64:1-10. doi: 10.1016/j.msec.2016.03.049.
- López-Valverde N., López-Valverde A., Aragoneses J.M., Macedo de Sousa B., Rodrigues M.J., Ramírez J.M. Systematic Review and Meta-Analysis of the Effectiveness of Calcium-Phosphate Coating on the Osseointegration of Titanium Implants. Materials (Basel). 2021;14(11):3015. doi: 10.3390/ma14113015.
- Costa Filho P.M.D., Marcantonio C.C., Oliveira D.P., Lopes M.E.S., Puetate J.C.S., Faria L.V. et al. Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study. J Appl Oral Sci. 2024;32:e20240144. doi: 10.1590/1678-7757-2024-0144.
- Su Y., Komasa S., Li P., Nishizaki M., Chen L., Terada C., Yoshimine S. et al. Synergistic effect of nanotopography and bioactive ions on peri-implant bone response. Int J Nanomedicine. 2017;12:925-934. doi: 10.2147/IJN.S126248.
- Корыткин А.А., Орлинская Н.Ю., Новикова Я.С., Герасимов С.А., Давыденко Д.В., Кулакова К.В. и др. Биосовместимость и костная интеграция титановых имплантатов различной пористости с кальций-фосфатным покрытием и без покрытия. Современные технологии в медицине. 2021;13(2): 52-58. doi: 10.17691/stm2021.13.2.06. Korytkin A.A., Orlinskaya N.Yu., Novikova Ya.S., Gerasimov S.A., Davydenko D.V., Kulakova K.V. et al. Biocompatibility and osseointegration of calcium phosphate-coated and non-coated titanium implants with various porosities. Modern Technologies in Medicine. 2021;13(2):52-58. (In Russian). doi: 10.17691/stm2021.13.2.06.
- Tan N., Liu X., Cai Y., Zhang S., Jian B., Zhou Y. et al. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs. Int J Nanomedicine. 2017;12:5433-5442. doi: 10.2147/IJN.S138615.
- Майбородин И.В., Шевела А.А., Тодер М.С., Шевела А.И. Современные тенденции выбора и обработки материалов для дентальной имплантации. Стоматология. 2018;(4):68-76. doi: 10.17116/stomat20189704168. Maiborodin I.V., Shevela A.A., Toder M.S., Shevela A.I. Current trends of the choice and processing of materials for dental implantation. Stomatology. 2018;97(4):68-76. (In Russian). doi: 10.17116/stomat20189704168.
- Tsikopoulos K., Sidiropoulos K., Kitridis D., Hassan A., Drago L., Mavrogenis A. et al. Is coating of titanium implants effective at preventing Staphylococcus aureus infections? A meta-analysis of animal model studies. Int Orthop. 2021;45:821-835. doi: 10.1007/s00264-020-04660-4.
- Lee J.H., Kwon J.S., Moon S.K., Uhm S.H., Choi B.H., Joo U.H. et al. Titanium-silver alloy miniplates for mandibular fixation: In vitro and in vivo study. J Oral Maxillofac Surg. 2016;74(8):1622.e1-1622.e12. doi: 10.1016/j.joms.2016.04.010.
- Сманалиев М.Д., Юлдашев И.М. Возможности покрытия поверхности дентальных титановых имплантатов нано частицами из нано раствора серебра. Бюллетень науки и практики. 2021;7(9):308-314. doi: 10.33619/2414-2948/70/26. Smanaliev M., Yuldashev I. Possibilities of Dental Titanium Implants Surface Coating With Nano Particles from Nano Silver Solution. Bulletin of Science and Practice. 2021;7(9):308-314. (In Russian). doi: 10.33619/2414-2948/70/26.
- Николаев Н.С., Любимова Л.В., Пчелова Н.Н., Преображенская Е.В., Алексеева А.В. Использование имплантатов с покрытием на основе двумерно-упорядоченного линейно-цепочечного углерода, легированного серебром, для лечения перипротезной инфекции. Травматология и ортопедия России. 2019;25(4):98-108. doi: 10.21823/2311-2905-2019-25-4-98-108. Nikolaev N.S., Lyubimova L.V., Pchelova N.N., Preobrazhenskaya E.V., Alekseeva A.V. Treatment of Periprosthetic Infection with Silver-Doped Implants Based on Two-Dimensional Ordered Linear Chain Carbon. Traumatology and Orthopedics of Russia. 2019;25(4):98-108. (In Russian). doi: 10.21823/2311-2905-2019-25-4-98-108.
- Liu R., Memarzadeh K., Chang B., Zhang Y., Ma Z., Allaker R.P. et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985. doi: 10.1038/srep29985.
- Heo D.N., Ko W.K., Lee H.R., Lee S.J., Lee D., Um S.H. et al. Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci. 2016:469: 129-137. doi: 10.1016/j.jcis.2016.02.022.
- Li M., Wu G., Wang M., Hunziker E.B., Liu Y. Crystalline biomimetic calcium phosphate coating on mini-pin implants to accelerate osseointegration and extend drug release duration for an orthodontic application. Nanomaterials. 2022;12(14):2439. doi: 10.3390/nano12142439.
- Lin X., Chen J., Liao Y., Pathak J.L., Li H., Liu Y. Biomimetic calcium phosphate coating as a drug delivery vehicle for bone tissue engineering: A mini-review. Coatings. 2020;10(11):1118. doi: 10.3390/coatings10111118.
- Шаркеев Ю.П., Седельникова М.Б., Толкачева Т.В., Щеглова Н.А., Панченко А.А., Красовский И.Б. и др. Микродуговые Zn- и Ag-содержащие покрытия для имплантатов со сложной поровой архитектурой, полученных методом 3D-печати из титанового сплава. Травматология и ортопедия России. 2020;26(2): 109-119. doi: 10.21823/2311-2905-2020-26-2-109-119. Sharkeev Yu.P., Sedelnikova M.B., Tolkacheva T.V., Shcheglova N.A., Panchenko A.A., Krasovsky I.B. et al. Micro-Arc Zn- and Ag-Containing Coatings for Implants with Complex Porous Architecture Obtained by 3D Printing Method from Titanium Alloy. Traumatology and Orthopedics of Russia. 2020;26(2):109-119. (In Russian). doi: 10.21823/2311-2905-2020-26-2-109-119.
- Стогов М.В., Еманов А.А., Кузнецов В.П., Комарова Е.Г., Горбач Е.Н., Киреева Е.А. и др. Влияние цинксодержащего кальций-фосфатного покрытия на остеоинтеграцию чрескожных имплантатов для протезирования конечностей. Гений ортопедии. 2024;30(5):677-686. doi: 10.18019/1028-4427-2024-30-5-677-686. Stogov M.V., Emanov A.A., Kuznetsov V.P., Komarova E.G., Gorbach E.N., Kireeva E.A. et al. The effect of zinc-containing calcium phosphate coating on the osseointegration of transcutaneous implants for limb prosthetics. Genij Ortopedii. 2024;30(5):677-686. (In Russian). doi: 10.18019/1028-4427-2024-30-5-677-686.
- Germaini M.M., Belhabib S., Guessasma S., Deterre R., Corre P., Weiss P. Additive manufacturing of biomaterials for bone tissue engineering – A critical review of the state of the art and new concepts. Progress in Materials Science. 2022;130:100963. doi: 10.1016/j.pmatsci.2022.100963.
- Renuka R., Devi K.R., Sivakami M., Thilagavathi T., Uthrakumar R., Kaviyarasu K. Biosynthesis of silver nanoparticles using phyllanthus emblica fruit extract for antimicrobial application. Biocatalysis and Agricultural Biotechnology. 2020;24:101567. doi: 10.1016/j.bcab.2020.101567.
- Bruna T., Maldonado-Bravo F., Jara P., Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021;22(13):7202. doi: 10.3390/ijms22137202.
- Тапальский Д.В., Осипов В.А., Сухая Г.Н., Ярмоленко М.А., Рогачев А.А., Рогачев А.В. Биосовместимые композиционные антибактериальные покрытия для защиты имплантатов от микробных биопленок. Проблемы здоровья и экологии. 2013; (2):129-134. doi: 10.51523/2708-6011.2013-10-2-24. Tapalskiy D.V., Osipov V.A., Sukhaya G.N., Yarmolenko M.A., Rogachiov A.A., Rogachiov A.V. Biocompatible composite antibacterial coatings for protection of implants against microbial biofilms. Health and Ecology Issues. 2013;(2):129-134. (In Russian). doi: 10.51523/2708-6011.2013-10-2-24.
- Roszak J., Smok-Pieniążek A., Spryszyńska S., Kowalczyk K., Domeradzka-Gajda K., Świercz R. et al. Cytotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with selected aluminium compounds, parabens or phthalates. J Hazard Mater. 2020;392:122442. doi: 10.1016/j.jhazmat.2020.122442.
- Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375.
Supplementary files
