Current Concepts in Diagnostics and Treatment of Patellar Instability: Review

Cover Page

Cite item

Abstract

Background. Patellar instability is one of the most common pathologies of the musculoskeletal system, predominantly observed in physically active young individuals. It ranks third in the structure of knee joint injuries after anterior cruciate ligament and meniscal injuries.

The aim of this review — to present modern perspectives on the diagnosis, principles, and surgical treatment techniques for patients with patellar instability based on an analysis of the literature.

Methods. Publications were searched in the PubMed/MedLine and eLIBRARY databases. A total of 112 foreign articles published between 1984 and 2023 and 12 domestic publications from 2011 to 2022 were found. During the analysis, 68 articles were selected, which had full texts or abstracts containing sufficient information on diagnostic methods, commonly used standard and modified surgical correction methods for patellar instability, and treatment protocols considering patient age structure, instability characteristics, and functional demands.

Results. A qualitatively new stage in the reconstructive and restorative surgery of patellar instability is the in-depth examination of patients to determine the extent of damage to the medial retinaculum and the presence of dysplastic changes in anatomical structures that provide normal biomechanics of the knee extensor apparatus. A strictly individual approach to the selection of surgical treatment methods considering risk factors contributing to the development of chronic patellar instability becomes of particular importance.

Conclusion. Precise restoration of the medial patellofemoral ligament, supplemented by the correction of identified dysplastic changes in anatomical formations of the knee joint area, allows for better functional outcomes in patients with acute and chronic patellar instability.

About the authors

Vladimir V. Khominets

Kirov Military Medical Academy

Email: khominets_62@mail.ru
ORCID iD: 0000-0001-9391-3316
SPIN-code: 5174-4433
Scopus Author ID: 6504618617

Dr. Sci. (Med.), Professor

Russian Federation, 6, St. Petersburg, Akademika Lebedeva st., 194044

Dmitry A. Konokotin

Kirov Military Medical Academy

Author for correspondence.
Email: konokotin.dmitry@yandex.ru
ORCID iD: 0000-0003-3100-0321
SPIN-code: 1625-0543

адъюнкт кафедры военной травматологии и ортопедии

Russian Federation, 6, St. Petersburg, Akademika Lebedeva st., 194044

Oleg V. Rikun

Kirov Military Medical Academy

Email: rikoleg@yandex.ru
ORCID iD: 0000-0002-2027-8996
SPIN-code: 7508-2541

Cand. Sci. (Med.)

6, St. Petersburg, Akademika Lebedeva st., 194044

Alexey O. Fedotov

Kirov Military Medical Academy

Email: alexfedot83@gmail.com
ORCID iD: 0000-0002-9953-9385
SPIN-code: 3639-4352

Cand. Sci. (Med.)

Russian Federation, 6, St. Petersburg, Akademika Lebedeva st., 194044

Alexey S. Grankin

Kirov Military Medical Academy

Email: aleksey-grankin@yandex.ru
ORCID iD: 0000-0002-4565-9066
SPIN-code: 1122-8388

Cand. Sci. (Med.)

Russian Federation, 6, St. Petersburg, Akademika Lebedeva st., 194044

Aleksandr S. Vorobiev

Kirov Military Medical Academy

Email: aleks.vorobev2000@mail.ru
ORCID iD: 0009-0006-8878-0145

cadet

Russian Federation, 6, St. Petersburg, Akademika Lebedeva st., 194044

References

  1. Sanders T.L., Pareek A., Hewett T.E., Stuart M.J., Dahm D.L., Krych A.J. Incidence of first-time la-teral patellar dislocation: a 21-year population-based study. Sports Health. 2018;10(2):146-151. doi: 10.1177/1941738117725055.
  2. Majewski M., Susanne H., Klaus S. Epidemiology of athletic knee injuries: A 10-year study. Knee. 2006;13(3):184-188. doi: 10.1016/j.knee.2006.01.005.
  3. Moiz M., Smith N., Smith T.O., Chawla A., Thompson P., Metcalfe A. Clinical Outcomes After the Nonoperative Management of Lateral Patellar Dislocations: A Systematic Review. Orthop J Sports Med. 2018;6(6):2325967118766275. doi: 10.1177/2325967118766275.
  4. Magnussen R.A., Verlage M., Stock E., Zurek L., Flanigan D.C., Tompkins M. et al. Primary patellar dislocations without surgical stabilization or recurrence: how well are these patients really doing? Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2352-2356. doi: 10.1007/s00167-015-3716-3.
  5. Huntington L.S., Webster K.E., Devitt B.M., Scanlon J.P., Feller J.A. Factors associated with an increased risk of recurrence after a first-time patellar dislocation. A systematic review and meta-analysis. Am J Sports Med. 2019;48(10):2552-2562. doi: 10.1177/0363546519888467.
  6. Salonen E.E., Magga T., Sillanpää P.J., Kiekara T., Mäenpää H., Mattila V.M. Traumatic patellar dislocation and cartilage injury: a follow-up study of long-term cartilage deterioration. Am J Sports Med. 2017;45(6): 1376-1382. doi: 10.1177/0363546516687549.
  7. Orletskiy A.K., Timchenko D.O., Gordeev N.A. Development of approaches to treatment of knee instability. N.N. Priorov Journal of Traumatology and Orthopedics. 2021;28(1):109-120. (In Russian). doi: 10.17816/vto63217.
  8. Balcarek P., Oberthür S., Hopfensitz S., Frosch S., Walde T.A., Wachowski M.M. et al. Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2308-2314. doi: 10.1007/s00167-013-2650-5.
  9. Dejour H., Walch G., Nove-Josserand L., Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19-26. doi: 10.1007/BF01552649.
  10. Koh J.L., Stewart C. Patellar instability. Clin Sports Med. 2014;33(3):461-476. doi: 10.1016/j.csm.2014.03.011.
  11. Lewallen L., McIntosh A., Dahm D. First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg. 2015;28(4):303-309. doi: 10.1055/s-0034-1398373.
  12. Pruneski J., O’Mara L., Perrone G.S., Kiapour A.M. Changes in Anatomic Risk Factors for Patellar Instability During Skeletal Growth and Maturation. Am J Sports Med. 2022;50(9):2424-2432. doi: 10.1177/03635465221102917.
  13. Thakkar R.S., Del Grande F., Wadhwa V., Chalian M., Andreisek G., Carrino J.A. et al. Patellar instability: CT and MRI measurements and their correlation with internal derangement findings. Knee Surg Sports Traumatol Arthrosc. 2016;24(9):3021-3028. doi: 10.1007/s00167-015-3614-8.
  14. Huber Ch., Zhang Q., Taylor W.R., Amis A.A., Smith C., Nasab S.H.H. Properties and function of the medial patellofemoral ligament A systematic review. Am J Sports Med. 2020;48(3):754-766. doi: 10.1177/0363546519841304.
  15. Ragot L., Gerber F., Lannes X., Moerenhout K. The use of a 30-degree radiolucent triangle during surgery in distal avulsion fractures of the patella. J Orthop Surg Res. 2023;18(1):204. doi: 10.1186/s13018-023-03631-w.
  16. Neyret P., Robinson A.H.N., Le Coultre B., Lapra C., Chambat P. Patellar tendon length – the factor in patellar instability? Knee. 2002;9(1):3-6. doi: 10.1016/s0968-0160(01)00136-3.
  17. Fathalla I., Holton J., Ashraf T. Examination under anesthesia in patients with recurrent patellar dislocation: prognostic study. J Knee Surg. 2019;32(4):361-365. doi: 10.1055/s-0038-1641174.
  18. Zhang L., Li Z. Long-term clinical results of double bundle reconstruction of the medial patellofemoral ligament for patellar instability. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):153-159. doi: 10.1055/s-0038-1636913.
  19. Luceri F., Roger J, Randelli P.S., Lustig S., Servien E. How does isolated medial patellofemoral ligament reconstruction influence patellar height? Am J Sports Med. 2020;48(4):895-900. doi: 10.1177/0363546520902132.
  20. Tan S.H.S., Hui S.J., Doshi C., Wong K.L., Lim A.K.S., Hui J.H. The Outcomes of Distal Femoral Varus Osteotomy in Patellofemoral Instability: A Systematic Review and Meta-Analysis. J Knee Surg. 2020;33(5):504-512. doi: 10.1055/s-0039-1681043.
  21. Seitlinger G., Scheurecker G., Högler R., Labey L., Innocenti B., Hofmann S. Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med. 2012;40(5):1119-1125. doi: 10.1177/0363546512438762.
  22. Xu Z., Zhang H., Fu B., Mohamed S.I., Zhang J., Zhou A. Tibial Tubercle-Roman Arch Distance: A New Measurement of Patellar Dislocation and Indication of Tibial Tubercle Osteotomy. Orthop J Sports Med. 2020;8(4):2325967120914872. doi: 10.1177/2325967120914872.
  23. Kim T.J., Lee T.J., Song H.S., Bae J.H. The Tibial Tuberosity-Rotational Angle as a Novel Predisposing Parameter for Patellar Dislocation. Orthop J Sports Med. 2022;10(12):23259671221142626. doi: 10.1177/23259671221142626.
  24. Xu Z., Zhang H., Yan W., Qiu M., Zhang J., Zhou A. Validating the Role of Tibial Tubercle-Posterior Cruciate Ligament Distance and Tibial Tubercle-Trochlear Groove Distance Measured by Magnetic Resonance Imaging in Patients With Patellar Dislocation: A Diagnostic Study. Arthroscopy. 2021;37(1):234-242. doi: 10.1016/j.arthro.2020.09.004.
  25. Zhang Z., Zhang H., Song G., Zheng T., Ni Q., Feng H. Increased femoral anteversion is associated with inferior clinical outcomes after MPFL reconstruction and combined tibial tubercle osteotomy for the treatment of recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc. 2020;28(7):2261-2269. doi: 10.1007/s00167-019-05818-3.
  26. Lee K.W., Seo D.K., Bae J.Y., Ra H.J., Choi S.J., Kim J.K. Usefulness of three-dimensional computed tomography for patellofemoral measurement. Knee Surg Sports Traumatol Arthrosc. 2022;30(4):1423-1429. doi: 10.1007/s00167-021-06624-6.
  27. Dejour D., Saggin P. The sulcus deepening trochleoplasty-the Lyon’s procedure. Int Orthop. 2010;34(2):311-316. doi: 10.1007/s00264-009-0933-8.
  28. Tecklenburg K., Dejour D., Hoser C., Fink C. Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):235-240. doi: 10.1007/s00167-005-0683-0.
  29. Hiemstra L.A., Kerslake S., Kupfer N., Lafave M. Patellofemoral Stabilization: Postoperative Redislocation and Risk Factors Following Surgery. Orthop J Sports Med. 2019;7(6):2325967119852627. doi: 10.1177/2325967119852627.
  30. Izadpanah K., Meine H., Kubosch J., Lang G., Fuchs A., Maier D. et al. Fluoroscopic guided tunnel placement during medial patellofemoral ligament reconstruction is not accurate in patients with severe trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):759-766. doi: 10.1007/s00167-019-05413-6.
  31. Бур’янов О.А., Крищук М.Г., Костогриз О.А., Лиходій В.В., Єщенко В.О. Задніченко М.О. Features of structural and functional disorders in patellar instability associated with femoral condyle dysplasia (clinical and experimental study). Trauma. 2013;14(5):58-63. (In Ukrainian).
  32. Balcarek P., Ammon J., Frosch S., Walde T.A., Schüttrumpf J.P., Ferlemann K.G. et al. Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy. 2010;26(7):926-935. doi: 10.1016/j.arthro.2009.11.004.
  33. Conlan T., Garth W.P. Jr., Lemons J.E. Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg Am. 1993;75(5):682-693. doi: 10.2106/00004623-199305000-00007.
  34. Kernkamp W.A., Wang C., Li C., Hu H., van Arkel E.R.A., Nelissen R.G.H.H. et al. The Medial Patellofemoral Ligament Is a Dynamic and Anisometric Structure: An in Vivo Study on Length Changes and Isometry. Am J Sports Med. 2019;47(7):1645-1653. doi: 10.1177/0363546519840278.
  35. Yang Y., Zhang Q. Reconstruction of the medial patellofemoral ligament and reinforcement of the medial patellotibial ligament is an effective treatment for patellofemoral instability with patella alta. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2995-2907. doi: 10.1007/s00167-018-5281-z.
  36. Hetsroni I., Mann G., Dolev E., Nyska M. Combined reconstruction of the medial patellofemoral and medial patellotibial ligaments: outcomes and prognostic factors. Knee Surg Sports Traumatol Arthrosc. 2019;27(2): 507-515. doi: 10.1007/s00167-018-5145-6.
  37. Redler L.H., Spang R.C., Tepolt F., Davis E.A., Kocher M.S. Combined reconstruction of the medial patellofemoral ligament [MPFL] and medial quadriceps tendon-femoral ligament [MQTFL] for patellar instability in children and adolescents: surgical technique and outcomes. Orthop J Sports Med. 2017;5(7). doi: 10.1177/ 2325967117S00387.
  38. Malanin D.A., Novikov D.A., Suchilin I.A., Cheresov L.L. Significance of medial patello-femoral ligament in support of patella stability: features of anatomy and biomechanics. Traumatology and Orthopedics of Russia. 2015;(2):56-65. (In Russian). doi: 10.21823/2311-2905-2015-0-2-56-65.
  39. Erickson B.J., Nguyen J., Gasik K., Gruber S., Brady J., Shubin Stein B.E. Isolated Medial Patellofemoral Ligament Reconstruction for Patellar Instability Regardless of Tibial Tubercle-Trochlear Groove Distance and Patellar Height: Outcomes at 1 and 2 Years. Am J Sports Med. 2019;47(6):1331-1337. doi: 10.1177/0363546519835800.
  40. Post W.R., Fithian D.C. Patellofemoral Instability: A Consensus Statement From the AOSSM/PFF Patellofemoral Instability Workshop. Orthop J Sports Med. 2018;6(1):2325967117750352. doi: 10.1177/2325967117750352.
  41. Schöttle P.B., Schmeling A., Rosenstiel N., Weiler A. Radiographic landmarks for femoral tunnel placement in medial patellofemoral ligament reconstruction. Am J Sports Med. 2007;35(5):801-804. doi: 10.1177/0363546506296415.
  42. Migliorini F., Driessen A., Quack V., Gatz M., Tingart M., Eschweiler J. Surgical versus conservative treatment for first patellofemoral dislocations: a meta-analysis of clinical trials. Eur J Orthop Surg Traumatol. 2020;30(5):771-780. doi: 10.1007/s00590-020-02638-x.
  43. Schmeling A., Schöttle P. Revisionen nach MPFL rekonstruktion. Arthroskopie. 2015;28:202-212. doi: 10.1007/s00142-015-0028-z.
  44. Neri T., Parker D.A., Putnis S., Klasan A., Trombert-Paviot B., Farizon F. et al. Clinical and Radiological Predictors of Functional Outcome After Isolated Medial Patellofemoral Ligament Reconstruction at Midterm Follow-up. Am J Sports Med. 2019;47(6):1338-1345. doi: 10.1177/0363546519831294.
  45. Raoulis V.A., Zibis A., Chiotelli M.D., Kermanidis A.T., Banios K., Schuster P. et al. Biomechanical evaluation of three patellar fixation techniques for MPFL reconstruction: Load to failure did not differ but interference screw stabilization was stiffer than suture anchor and suture-knot fixation. Knee Surg Sports Traumatol Arthrosc. 2021;29(11):3697-3705. doi: 10.1007/s00167-020-06389-4.
  46. Berton A., Salvatore G., Orsi A., Egan J., DeAngelis J., Ramappa A. et al. Lateral retinacular release in concordance with medial patellofemoral ligament reconstruction in patients with recurrent patellar instability: A computational model. Knee. 2022;39:308-318. doi: 10.1016/j.knee.2022.10.006.
  47. Levy B.J., Jimenez A.E., Fitzsimmons K.P., Pace J.L. Medial patellofemoral ligament reconstruction and lateral retinacular lengthening in the skeletally immature patient. Arthrosc Tech. 2020;9(6):e737-e745. doi: 10.1016/j.eats.2020.02.004.
  48. Patel N.K., Lesniak B.P. Editorial commentary: medial patellofemoral ligament reconstruction: are we overtensioning the graft? Arthroscopy. 2020;48(5):1396-1397. doi: 10.1016/j.arthro.2020.02.035.
  49. Biesert M., Johansson A., Kostogiannis I., Roberts D. Self reported and performance based outcomes following medial patellofemoral ligament reconstruction indicate successful improvements in knee stability after surgery despite remaining limitations in knee function. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):934-940. doi: 10.1007/s00167-019-05570-8.
  50. Liu J.N., Brady J.M., Kalbian I.L., Strickland S.M., Ryan C.B., Nguyen J.T. et al. Clinical Outcomes After Isolated Medial Patellofemoral Ligament Reconstruction for Patellar Instability Among Patients With Trochlear Dysplasia. Am J Sports Med. 2018;46(4):883-889. doi: 10.1177/0363546517745625.
  51. Geierlehner А., Liebensteiner М., Schottle Р., Dirisamer F. Prevailing disagreement in the treatment of complex patellar instability cases: an online expert survey of the AGA Knee–Patellofemoral Committee. Knee Surg Sports Traumatol Arthrosc. 2020;28(8):2697-2705. doi: 10.1007/s00167-020-05936-3.
  52. Blønd L., Schöttle P.B. The arthroscopic deepening trochleoplasty. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):480-485. doi: 10.1007/s00167-009-0935-5.
  53. Korolev A.V., Magnitskaya N.E., Ryazantsev M.S., Sinitskiy M.A., Kadantsev P.M., Afanas’yev A.P. et al. Transpatellar reconstruction of medial patellofemoral ligament by semitendinous tendon autograft. Traumatology and Orthopedics of Russia. 2018;24(3):91-102. (In Russian). doi: 10.21823/2311-2905-2018-24-3-91-102.
  54. Shah J.N., Howard J.S., Flanigan D.C., Brophy R.H., Carey J.L., Lattermann C. A systematic review of complications and failures associated with medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med. 2012;40(8):1916-1923. doi: 10.1177/0363546512442330.
  55. Feucht M.J., Mehl J., Forkel Ph., Achtnich A., Schmitt A., Izadpanah K. et al. Failure analysis in patients with patellar redislocation after primary isolated medial patellofemoral ligament reconstruction. Orthop J Sports Med. 2020;8(6):2325967120926178. doi: 10.1177/2325967120926178.
  56. Dejour D., Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev. 2007;15(1):39-46. doi: 10.1097/JSA.0b013e31803035ae.
  57. Steensen R.N., Bentley J.C., Trinh T.Q., Backes J.R., Wiltfong R.E. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med. 2015;43(4):921-927. doi: 10.1177/0363546514563904.
  58. Imhoff F., Funke V., Muench L.N., Sauter A., Englmaier M., Woertler R., Imhoff M.B., Feucht M.J. The complexity of bony malalignment in patellofemoral disorders: femoral and tibial torsion, trochlear dysplasia, TT–TG distance, and frontal mechanical axis correlate with each other. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):897-900. doi: 10.1007/s00167-019-05542-y.
  59. Brown D.E., Alexander A.H., Lichtman D.M. The Elmslie-Trillat procedure: evaluation in patellar dislocation and subluxation. Am J Sports Med. 1984;12(2):104-109. doi: 10.1177/036354658401200203.
  60. Franciozi C.E., Ambra L.F., Albertoni L.J.B., Debieux P., Granata G.S.M. Jr., Kubota M.S. et al. Anteromedial Tibial Tubercle Osteotomy Improves Results of Medial Patellofemoral Ligament Reconstruction for Recurrent Patellar Instability in Patients With Tibial Tuberosity-Trochlear Groove Distance of 17 to 20 mm. Arthroscopy. 2019;35(2):566-574. doi: 10.1016/j.arthro.2018.10.109.
  61. Jud L., Singh S., Tondelli T., Fürnstahl P., Fucentese S.F., Vlachopoulos L. Combined Correction of Tibial Torsion and Tibial Tuberosity-Trochlear Groove Distance by Supratuberositary Torsional Osteotomy of the Tibia. Am J Sports Med. 2020;48(9):2260-2267. doi: 10.1177/0363546520929687.
  62. Arendt E.A., Askenberger M., Agel J., Tompkins M.A. Risk of redislocation after primary patellar dislocation: a clinical rediction model based on magnetic resonance imaging variables. Am J Sports Med. 2018;44(14): 3385-3390. doi: 10.1177/0363546518803936.
  63. Hiemstra L.A., Peterson D., Youssef M., Soliman J., Banfield L., Olufemi R. et al. Trochleoplasty provides good clinical outcomes and an acceptable complication profile in both short and long-term follow-up. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2967-2983. doi: 10.1007/s00167-018-5311-x.
  64. Hiemstra L.A., Kerslake S., Loewen M., Lafave M. Effect of Trochlear Dysplasia on Outcomes After Isolated Soft Tissue Stabilization for Patellar Instability. Am J Sports Med. 2016;44(6):1515-1523. doi: 10.1177/0363546516635626.
  65. Longo U., Vincenzo C., Mannuring N., Ciuffreda M., Salvatore G., Berton A. et al. Trochleoplasty techniques provide good clinical results in patients with trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2640-2658. doi: 10.1007/s00167-017-4584-9.
  66. Zaffagnini S., Previtali D., Tamborini S., Pagliazzi G., Filardo G., Candrian Ch. Recurrent patellar dislocations: trochleoplasty improves the results of medial patellofemoral ligament surgery only in severe trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3599-3613. doi: 10.1007/s00167-019-05469-4.
  67. Tan S.H.S., Lim B.Y., Chng K.S.J., Doshi C., Wong F.K.L., Lim A.K.S. et al. The Difference between Computed Tomography and Magnetic Resonance Imaging Measurements of Tibial Tubercle-Trochlear Groove Distance for Patients with or without Patellofemoral Instability: A Systematic Review and Meta-analysis. J Knee Surg. 2020;33(8):768-776. doi: 10.1055/s-0039-1688563.
  68. Zhang Z., Cao Y., Song G., Li Y., Zheng T., Zhang H. Derotational femoral osteotomy for treating recurrent patellar dislocation in the presence of increased femoral anteversion: a systematic review. Orthop J Sports Med. 2021;9(11):23259671211057126. doi: 10.1177/23259671211057126.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculation of the Caton-Deschamps index: AT — line connecting the lower edge of the patellar articular facet to the anterior edge of the tibial plateau; HA — line corresponding to the articular surface of the patella; CDI — Caton-Deschamps index, the ratio of the length of the AT line to the HA line

Download (156KB)
3. Fig. 2. Scheme for calculating the TT-TG index in the axial plane: AB — tangent line to the femoral condyles; CD — perpendicular from the center of the tibial tuberosity to the line of the femoral condyles; EF — perpendicular from the center of the articular surface of the femoral block to the line of the femoral condyles; GH — distance between the center of the articular surface of the femoral block and the center of the tibial tuberosity

Download (86KB)
4. Fig. 3. X-ray of the knee joint with signs of trochlear dysplasia in the lateral projection:

Download (81KB)
5. Fig. 4. D. Dejour classification of trochlear dysplasia

Download (318KB)
6. Fig. 5. Scheme of tunnel formation for fixation of the MPFL graft in the femoral condyle: A — satisfactory tunnel positioning; B — correct tunnel location

Download (88KB)
7. Fig. 6. Scheme of medializing transposition of the tibial tuberosity according to Elmslie-Trillat

Download (226KB)
8. Fig. 7. Scheme of distalization and medialization of the tibial tuberosity (DMTT)

Download (133KB)
9. Fig. 8. Scheme of trochleoplasty according to D. Dejour (2010)

Download (192KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».