Revision Reconstruction of the Cervical Spine in a Patient With Early Deep Surgical Site Infection Complicated by Angular Kyphosis: Case Report and Review

Cover Page

Cite item

Abstract

Background. Deep surgical site infection (DSSI) is one of the most severe complications in spinal surgery. The timing and nature of DSSI are the determining criteria in the choice of treatment tactics. The uniqueness of the clinical observation is the combination of early DSSI, epidural abscess and angular kyphotic deformity formed after a course of conservative antibacterial therapy in a patient who underwent surgery for degenerative-dystrophic disease of the cervical spine. Correction of angular kyphosis, removal of fractured vertebrae, interbody implants and three-column cervical reconstruction were performed in one surgical session.

Case presentation. A 57-year-old patient was admitted to the clinic after staged surgical interventions on the cervical spine for multilevel degenerative stenosis of the spinal canal. The primary surgical interventions were complicated by DSSI in the early period after the second surgery with formation of angular kyphosis of the cervical spine. The patient underwent revision one-stage reconstructive intervention to correct the deformity, decompress the spinal canal, and three-column reconstruction of C3-7 segments. Long-term follow-up showed persistent reduction of pain syndrome, improved quality of life and absence of recurrence of DSSI.

Conclusion. The presented case illustrates the possibilities of one-stage revision three-column cervical spine reconstruction for correction of sagittal profile, decompression of intracanal neural structures and ensuring stability of operated segments. Use of DSSI treatment algorithms based on Prinz V. and Vajkoczy P. classification contributes to the selection of the optimal tactics of patient management.

About the authors

Denis G. Naumov

St. Petersburg State Research Institute of Phthisiopulmonology; St. Petersburg State University

Author for correspondence.
Email: dgnaumov1@gmail.com
ORCID iD: 0000-0002-9892-6260

Cand. Sci. (Med.)

Russian Federation, St. Petersburg; St. Petersburg

Sergey G. Tkach

St. Petersburg State Research Institute of Phthisiopulmonology

Email: tkach2324sergei@yandex.ru
ORCID iD: 0000-0001-7135-7312
Russian Federation, St. Petersburg

Anton A. Ladygin

Federal Network of Medical Centers “MRI Expert”

Email: ladygin-antony1982@inbox.ru
ORCID iD: 0000-0002-2003-9987
Russian Federation, Apatity

Mikhail M. Shchelkunov

St. Petersburg State Research Institute of Phthisiopulmonology

Email: mm.shelkunov1881@yandex.ru
ORCID iD: 0000-0002-6305-6023
Russian Federation, St. Petersburg

Andrey A. Karpushin

St. Petersburg State Research Institute of Phthisiopulmonology

Email: karpushin@lyag.ru
ORCID iD: 0000-0002-7178-3861
Russian Federation, St. Petersburg

References

  1. Buell T.J., Buchholz A.L., Quinn J.C., Shaffrey C.I., Smith J.S. Importance of Sagittal Alignment of the Cervical Spine in the Management of Degenerative Cervical Myelopathy. Neurosurg Clin N Am. 2018;29(1): 69-82. doi: 10.1016/j.nec.2017.09.004.
  2. Shamji M.F., Mohanty C., Massicotte E.M., Fehlings M.G. The Association of Cervical Spine Alignment with Neurologic Recovery in a Prospective Cohort of Patients with Surgical Myelopathy: Analysis of a Series of 124 Cases. World Neurosurg. 2016;86:112-119. doi: 10.1016/j.wneu.2015.09.044.
  3. Li X.Y., Wang Y., Zhu W.G., Kong C., Lu S.B. Impact of cervical and global spine sagittal alignment on cervical curvature changes after posterior cervical laminoplasty. J Orthop Surg Res. 2022;17(1):521. doi: 10.1186/s13018-022-03421-w.
  4. Naumov D.G., Vishnevskiy A.A., Tkach S.G., Avetisyan A.O. [Spinal Hydatid Disease of Cervico-Thoracic in Pregnant Women: A Case Report and Review]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2021;27(4):102-110. (In Russian). doi: 10.21823/2311-2905-1668.
  5. Han K., Lu C., Li J., Xiong G.Z., Wang B., Lv G.H. et al. Surgical treatment of cervical kyphosis. Eur Spine J. 2011;20(4):523-536. doi: 10.1007/s00586-010-1602-8.
  6. Naumov D.G., Tkach S.G., Mushkin A.Yu., Makogonova M.E. [Chronic infectious lesions of the cervical spine in adults: monocentric cohort analysis and literature review]. Khirurgiya pozvonochnika [Spine Surgery]. 2021;18(3):68-76. (In Russian). doi: 10.14531/ss2021.3.68-76.
  7. Ogura Y., Dimar J.R., Djurasovic M., Carreon L.Y. Etiology and treatment of cervical kyphosis: state of the art review-a narrative review. J Spine Surg. 2021;7(3): 422-433. doi: 10.21037/jss-21-54.
  8. Barnes M., Liew S. The Incidence of Infection after Posterior Cervical Spine Surgery: A 10 Year Review. Global Spine J. 2012;2(1):3-6. doi: 10.1055/s-0032-13072.
  9. Mushkin A.Y., Schelkunov M.M., Snischuk V.P., Evseev V.A. [The peculiarities of the structure on the pediatric cervical spine surgical pathology (analysis of the monocenter cohort and literature data)]. Meditsinskii al’yans [Medical Alliance]. 2018;(1):60-67. (In Russian).
  10. Kaptain G.J., Simmons N.E., Replogle R.E., Pobereskin L. Incidence and outcome of kyphotic deformity following laminectomy for cervical spondylotic myelopathy. J Neurosurg. 2000;93(2 Suppl):199-204. doi: 10.3171/spi.2000.93.2.0199.
  11. McGirt M.J., Chaichana K.L., Atiba A., Bydon A., Witham T.F., Yao K.C. et al. Incidence of spinal deformity after resection of intramedullary spinal cord tumors in children who underwent laminectomy compared with laminoplasty. J Neurosurg Pediatr. 2008;1(1):57-62. doi: 10.3171/PED-08/01/057.
  12. Bell D.F., Walker J.L., O’connor G., Tibshirani R. Spinal deformity after multiple-level cervical laminectomy in children. Spine (Phila Pa 1976). 1994;19(4):406-411. doi: 10.1097/00007632-199402001-00005.
  13. McLaughlin M.R., Wahlig J.B., Pollack I.F. Incidence of postlaminectomy kyphosis after Chiari decompression. Spine (Phila Pa 1976). 1997;22(6):613-617.
  14. Ma L., Liu F.Y., Huo L.S., Zhao Z.Q., Sun X.Z., Li F. et al. Comparison of laminoplasty versus laminectomy and fusion in the treatment of multilevel cervical ossification of the posterior longitudinal ligament: A systematic review and meta-analysis. Medicine. 2018;97(29):e11542. doi: 10.1097/00007632-199703150-00007.
  15. Fager C.A. Laminectomy and kyphotic deformity. J Neurosurg. 2001;95(1 Suppl):157-158. doi: 10.3171/spi.2001.95.1.0157.
  16. Suk K.S., Kim K.T., Lee J.H., Lee S.H., Lim Y.J., Kim J.S. Sagittal alignment of the cervical spine after the laminoplasty. Spine (Phila Pa 1976). 2007;32(23).E656-E660. doi: 10.1097/BRS.0b013e318158c573.
  17. Drain J.P., Virk S.S., Jain N., Yu E. Dropped Head Syndrome: A Systematic Review. Clin Spine Surg. 2019;32(10): 423-429. doi: 10.1097/BSD.0000000000000811.
  18. Khandelwal A., Sokhal S., Dube S., Goyal K., Singh A., Tandon V. et al. Perioperative Management of a Patient with Chin-On-Chest Deformity Presenting for Reconstructive Spine Surgery. Neurol India. 2021;69(6):1756-1758. doi: 10.4103/0028-3886.333489.
  19. Sharan A.D., Kaye D., Charles Malveaux W.M., Riew K.D. Dropped head syndrome: etiology and management. J Am Acad Orthop Surg. 2012;20(12):766-774. doi: 10.5435/JAAOS-20-12-766.
  20. Schwab F., Ungar B., Blondel B., Buchowski J., Coe J., Deinlein D. et al. Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976). 2012;37(12):1077-1082. doi: 10.1097/BRS.0b013e31823e15e2
  21. Miyazaki M., Abe T., Ishihara T., Kanezaki S., Notani N., Kataoka M. et al. Cervical alignment after single-level anterior cervical corpectomy and fusion using autologous bone graft without spinal instrumentation for cervical pyogenic spondylitis. Eur J Orthop Surg Traumatol. 2020;30(3):479-484. doi: 10.1007/s00590-019-02594-1.
  22. Mutoh M., Fukuoka T., Suzuki O., Hattori S. Three-Staged Surgical Strategy as a Combined Approach for Multilevel Cervical Pyogenic Spondylodiscitis. Cureus. 2021;13(9):e17747. doi: 10.7759/cureus.17747.
  23. Shousha M., Mosafer A., Boehm H. Infection rate after transoral approach for the upper cervical spine. Spine (Phila Pa 1976). 2014;39(19):1578-1583. doi: 10.1097/BRS.0000000000000475.
  24. Cloward R.B. Treatment of hyperhidrosis palmaris (sweaty hands); a familial disease in Japanese. Hawaii Med J. 1957;16(4):381-387.
  25. Wang M., Xu L., Yang B., Du C., Zhu Z., Wang B. et al. Incidence, management and outcome of delayed deep surgical site infection following spinal deformity surgery: 20-year experience at a single institution. Global Spine J. 2022;12(6):1141-1150. doi: 10.1177/2192568220978225.
  26. Prinz V., Vajkoczy P. Surgical revision strategies for postoperative spinal implant infections (PSII). J Spine Surg. 2020;6(4):777-784. doi: 10.21037/jss-20-514.
  27. Agarwal A., Kelkar A., Agarwal A.G., Jayaswal D., Schultz C., Jayaswal A. et al. Implant retention or removal for management of surgical site infection after spinal surgery. Global Spine J. 2020;10(5):640-646. doi: 10.1177/2192568219869330.
  28. Fujiyoshi T., Yamazaki M., Kawabe J., Endo T., Furuya T., Koda M. et al. A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine (Phila Pa 1976). 2008;33(26).E990-E993. doi: 10.1097/BRS.0b013e318188b300.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MRI (a — T2 images; b — STIR images): C3–С7 polysegmental degenerative changes, spinal canal stenosis, C6–С7 end plates oedema type I Modic, polysegmental myelopathy C4–С7

Download (31KB)
3. Fig. 2. MRI (a — T2 images; b — STIR images) and CT (c) after the first operation: two interbody implants (PEEK cages) are identified at the C5–С6, C6–С7, C4–С6 ossification of the posterior longitudinal ligament (segmental type according to the Committee on the Ossification of the Spinal Ligaments)

Download (70KB)
4. Fig. 3. MRI after the second operation: a — STIR images; b — T2 images: prevertebral, epidural abscesses, C3–С5 spondylitis, focal myelopathy at C2–С3

Download (29KB)
5. Fig. 4. X–ray (a), CT (b) and MRI (c) at the time of hospital admission: angular kyphosis 48° Cobb, destruction of C3–С5, myelopathy at C2–С3, no signs of active inflammatory process (abscesses)

Download (47KB)
6. Fig. 5 (a, b, c, d). Sagittal (a) and frontal (b) X–rays, sagittal CT (c) 10 months after surgery: posterior transpedicular screw fixation correct position, solid anterior fusion C3–C7 formation detected. (d) - Axial (d) CT: posterior transpedicular screw fication correct position, solid anterior fusion C3–C7 formation detected

Download (66KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).