Cage Subsidence after Surgery on the Anterior Part of the Subaxial Cervical Spine: a Monocentric Prospective Clinical Study with a 3-Year Follow-Up

Cover Page

Cite item

Abstract

The choice of an implant for vertebra body defect replacement in corpectomy for traumatic lesions remains a point of discussion among spinal surgeons. Nanostructured carbon cages are promising for use in spinal surgery.

The purpose of this study was to determine the rate and degree of cage subsidence in the patients with traumatic lesions of the cervical spine undergone a single-level anterior corpectomy in the subaxial part of the cervical spine with reconstruction using a carbon or titanium cage.

Materials and Methods. A prospective study included 47 patients undergone a single-level corpectomy of the cervical spine due to traumatic injury. Two groups were formed by adaptive randomization: group I with the patients with carbon cages (n = 23), and group II with the patients with titanium cages (n = 24). The evaluation of cages subsidence and stability was carried by X-rays and CT before and after surgery. The quality of life before and after the surgery was evaluated using NDI and VAS questionnaires.

Results. According to the questionnaires, the absolute majority of the patients in both groups showed a statistically significant improvement of quality of life in the postoperative period (p<0.01). The first signs of implant subsidence were noted 3 months after surgery in group II. There were none of such cases in group I. The final result of the subsidence at the end of the follow-up comprised: for group I 0.6±0.4 mm, for group II 3.1±1.4 mm (p = 0.023). In group II, the bone block between bone tissue and the cage was recorded in 30% of patients (p = 0.037), in group I, the bone block was not formed. At the same time, according to the functional X-ray data, there were no signs of carbon cages instability in group I. None of the patients in groups I and II required revision surgery due to complications associated with cages placement.

Conclusion. The outcomes of carbon nanostructure cages placement as bodyreplacing implants in the cervical spine were not inferior to the outcomes of titanium mesh cages using. In group I, the carbon cages subsidence was significantly lower than in group II with titanium cages. The bone block was not formed in the case of carbon cages. It is worth noting that the carbon structure of the cages allowed the radiological diagnostics of the operated segment without artifacts formation.

About the authors

S. V. Kolesov

Priorov National Medical Research Center of Traumatology and Ortopaedics

Email: fake@neicon.ru

Sergey V. Kolesov — Dr. Sci. (Med.), Chief of Spine Pathology Department

Moscow

Russian Federation

A. I. Kazmin

Priorov National Medical Research Center of Traumatology and Ortopaedics

Author for correspondence.
Email: kazmin.cito@mail.ru

Arkady I. Kazmin — Cand. Sci. (Med.), Orthopedic Surgeon, Spine Pathology Department

Moscow

Russian Federation

I. V. Skorina

Priorov National Medical Research Center of Traumatology and Ortopaedics

Email: fake@neicon.ru

Igor’ V. Skorina — PhD Student, Spine Pathology Department

Moscow

Russian Federation

V. V. Shvets

Priorov National Medical Research Center of Traumatology and Ortopaedics

Email: fake@neicon.ru

Vladimir V. Shvets — Dr. Sci. (Med.), Leading Researcher, Spine Pathology Department

Moscow

Russian Federation

M. L. Sazhnev

Priorov National Medical Research Center of Traumatology and Ortopaedics

Email: fake@neicon.ru

Maxim L. Sazhnev — Cand. Sci. (Med.), Orthopedic Surgeon, Spine Pathology Department

Moscow

Russian Federation

A. A. Panteleev

Priorov National Medical Research Center of Traumatology and Ortopaedics

Email: fake@neicon.ru

Andrey A. Panteleev — Orthopedic Surgeon, Spine Pathology Department

Moscow

Russian Federation

V. S. Pereverzev

Priorov National Medical Research Center of Traumatology and Ortopaedics

Email: fake@neicon.ru

Vladimir S. Pereverzev — Orthopedic Surgeon, Spine Pathology Department

Moscow

Russian Federation

D. A. Kolbovski

Priorov National Medical Research Center of Traumatology and Ortopaedics;
Russian Medical Academy of Continuous Professional Education

Email: fake@neicon.ru

Dmitry A. Kolbovsky — Cand. Sci. (Med.), Senior Researcher, Spine Pathology Department; Assistant, Traumatology and Orthopedics Department

Moscow

Russian Federation

References

  1. Koller H., Reynolds J., Zenner J., Forstner R., Hempfing A., Maislinger I. et al. Mid- to long-term outcome of instrumented anterior cervical fusion for subaxial injuries. Eur Spine J. 2009;18(5):630-653. doi: 10.1007/s00586-008-0879-3.
  2. Колесов С.В., Пташников Д.А., Швец В.В. Повреждения спинного мозга и позвоночника. Москва: Авторская Академия; 2018. 568 с.
  3. Arnold P.M., Cheng I., Harris J.A., Hussain M.M., Zhang C., Karamian B. et al. Single-Level In Vitro Kinematic Comparison of Novel Inline Cervical Interbody Devices With Intervertebral Screw, Anchor, or Blade. Global Spine J. 2019;9(7):696-707. doi: 10.1177/2192568219833055.
  4. Reindl R., Ouellet J., Harvey E.J., Berry G., Arlet V. Anterior reduction for cervical spine dislocation. Spine (Phila Pa 1976). 2006;31(6):648-652. doi: 52.10.1097/01.brs.0000202811.03476.a0.
  5. Hilibrand A.S., Balasubramanian K., Eichenbaum M., Thinnes J.H., DaffneS., Berta S. et al. The Effect of Anterior Cervical Fusion on Neck Motion. Spine (Phila Pa 1976). 2006;31(15):1688-1692. doi: 10.1097/01.brs.0000224165.66444.71.
  6. Колбовский Д.А., Колесов С.В., Швец В.В., Рерих В.В., Вишневский А.А., Скорина И.В. и др. Остеокондуктивные свойства углеродных имплантов, применяемых в хирургии повреждений и заболеваний позвоночника (случай из практики). Гений ортопедии. 2018;24(2): 229-233. doi: 10.18019/1028-4427-2018-24-2-229-233.
  7. Arts M.P., Peul W.C. Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery. 2008;63(3):537-544; discussion 544-545. doi: 10.1227/01.NEU.0000325260.00628.DC.
  8. Floyd T., Ohnmeiss D. A meta-analysis of autograft versus allograft in anterior cervical fusion. Eur Spine J. 2000;9(5):398-403. doi: 10.1007/s005860000160.
  9. Shriver M.F., Lewis D.J., Kshettry V.R., Rosenbaum B.P., Benzel E.C., Mroz T.E. Dysphagia Rates after Anterior Cervical Diskectomy and Fusion: A Systematic Review and Meta-Analysis. Global Spine J. 2017;7(1):95-103. doi: 10.1055/s-0036-1583944.
  10. Weber M.H., Fortin M., Shen J., Tay B., Hu S.S., Berven S. et al. Graft Subsidence Following Anterior Cervical Corpectomy: A Clinical Study Comparing Different Interbody Cages. Clin Spine Surg. 2017;30(9): E1239-E1245. doi: 10.1097/BSD.0000000000000428.
  11. Brenke C., Fischer S., Carolus A., Schmieder K., Ening G. Complications associated with cervical vertebral body replacement with expandable titanium cages. J Clin Neurosci. 2016;32:35-40. doi: 10.1016/j.jocn.2015.12.036.
  12. Raslan F., Koehler S., Berg F., Rueckriegel S., Ernestus R.I., Meinhardt M. et al. Vertebral body replacement with PEEK-cages after anterior corpectomy in multilevel cervical spinal stenosis: A clinical and radiological evaluation. Arch Orthop Trauma Surg. 2014;134(5):611-618. doi: 10.1007/s00402-014-1972-1.
  13. Лавров И.Н., Хурцилава Н.Д. Замена тел шейных позвонков углеродными имплантатами. В кн.: Заболевания и повреждения позвоночника и спинного мозга. Москва; 1985. C. 26-28
  14. Лавров И.Н., Костиков В.И., Мусалатов Х.А., Хурцилава Н.Д., Куликов Л.С., Юмашев А.Г. Импланты из углерода в травматологии и ортопедии. В кн.: Ортезирование, экспресс-ортезирование и биоматериалы в травматологии и ортопедии. Харьков; 1987. C. 86-87.
  15. Проценко А.И., Юмашев Г.С., Учник П.А., Швец В.В. Передний шейный спондилодез углеродными имплантатами. В кн.: Патология позвоночника. Ленинград; 1990. с. 45-48.
  16. Wilson J.R., Grossman R.G., Frankowski R.F., Kiss A., Davis A.M., Kulkarni A.V. et al. A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors. J Neurotrauma. 2012;29(13):2263-2271. doi: 10.1089/neu.2012.2417.
  17. Gattozzi D.A., Yekzaman B.R., Jack M.M., O’Bryan M.J., Arnold P.M. Early ventral surgical treatment without traction of acute traumatic subaxial cervical spine injuries. Surg Neurol Int. 2018;9:254. doi: 10.4103/sni.sni_352_18.
  18. Jain V., Madan A., Thakur M., Thakur A. Functional Outcomes of Subaxial Spine Injuries Managed With 2-Level Anterior Cervical Corpectomy and Fusion: A Prospective Study. Neurospine. 2018;15(4):368-375. doi: 10.14245/ns.1836100.050.
  19. Aebi M. Surgical treatment of upper, middle and lower cervical injuries and non-unions by anterior procedures. Eur Spine J. 2010;19(Suppl 1):33-39. doi: 10.1007/s00586-009-1120-8.
  20. Feuchtbaum E., Buchowski J., Zebala L. Subaxial cervical spine trauma. Curr Rev Musculoskelet Med. 2016;9(4):496-504. doi: 10.1007/s12178-016-9377-0.
  21. Han M.S., Lee G.J., Kim J.H., Lee S.K., Moon B.J., Lee J.K. Outcomes of Anterior Cervical Fusion Using Polyetheretherketone Cage with Demineralized Bone Matrix and Plate for Management of Subaxial Cervical Spine Injuries. Korean J Neurotrauma. 2018;14(2): 123-128. doi: 10.13004/kjnt.2018.14.2.123.
  22. Kim S.H., Lee J.K., Jang J.W., Park H.W., Hur H. Polyetheretherketone cage with demineralized bone matrix can replace iliac crest autografts for anterior cervical discectomy and fusion in subaxial cervical spine injuries. J Korean Neurosurg Soc. 2017;60(2):211-219. doi: 10.3340/jkns.2015.0203.014.
  23. van Jonbergen H.P., Spruit M., Anderson P.G., Pavlov P.W. Anterior cervical interbody fusion with a titanium box cage: Early radiological assessment of fusion and subsidence. Spine J. 2005;5(6):645-649. doi: 10.1016/j.spinee.2005.07.007.
  24. Kabir S.M., Alabi J., Rezajooi K., Casey A.T. Anterior cervical corpectomy: Review and comparison of results using titanium mesh cages and carbon fibre reinforced polymer cages. Br J Neurosurg. 2010;24(5):542-546. doi: 10.3109/02688697.2010.503819.
  25. Lonjon N., Favreul E., Huppert J., Lioret E., Delhaye M., Mraidi R. Clinical and radiological outcomes of a cervical cage with integrated fixation. Medicine (Baltimore). 2019;98(3):e14097. doi: 10.1097/MD.0000000000014097.
  26. Yamagata T., Takami T., Uda T., Ikeda H., Nagata T., Sakamoto S. et al. Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: Cage subsidence and cervical alignment. J Clin Neurosci. 2012;19(12):1673-678. doi: 10.1016/j.jocn.2011.11.043.
  27. Sun K., Sun J., Wang S., Xu X., Wang Y., Xu T. et al. Placement of Titanium Mesh in Hybrid Decompression Surgery to Avoid Graft Subsidence in Treatment of Three-Level Cervical Spondylotic Myelopathy: Cephalad or Caudal? Med Sci Monit. 2018;24:9479-9487. doi: 10.12659/MSM.912650.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Traumatology and Orthopedics of Russia

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».