Osteogenesis Hormonal Regulation: Review
- 作者: Miromanov A.M.1, Gusev K.A.1
-
隶属关系:
- Chita State Medical Academy
- 期: 卷 27, 编号 4 (2021)
- 页面: 120-130
- 栏目: Reviews
- URL: https://journals.rcsi.science/2311-2905/article/view/124944
- DOI: https://doi.org/10.21823/2311-2905-1609
- ID: 124944
如何引用文章
全文:
详细
Background. The endocrine system occupies a leading place not only in the regulation of growth and development mechanisms, but also in compensation reactions when the body is exposed to extreme factors. Coordinated hormonal regulation contributes to the correct response of the macroorganism adaptive processes, aimed at restoring and maintaining homeostasis. A cascade of endocrine changes accompanies the processes of both physiological and reparative regeneration of bone tissue at all its stages. The aim of the study was to analyze the currently known mechanisms of hormonal regulation of physiological and reparative bone tissue regeneration. Materials and Methods. The search and analysis of scientific literary sources was carried out in the electronic databases PubMed and eLIBRARY. Search depth — 10 years. Results. The review considers both fundamental aspects and new data on the main histogenetic mechanisms of osteogenesis hormonal regulation. The ways and points of interaction of the endocrine and skeletal systems are highlighted, the main functions of hormones in the participation of bone remodeling in different age periods are determined. Conclusion. In violations of physiological regulation, hormonal imbalance is assigned a key role, while under conditions of reparative osteogenesis, the role of qualitative and dynamic changes in the endocrine system has been studied insufficiently. Hormonal regulation of reparative regeneration to date has no clear assessment criteria and requires further research.
作者简介
Alexandr Miromanov
Chita State Medical Academy
编辑信件的主要联系方式.
Email: miromanov_a@mail.ru
ORCID iD: 0000-0003-1432-1844
Dr. Sci. (Med.), Professor
俄罗斯联邦, ChitaKirill Gusev
Chita State Medical Academy
Email: kirill.gusev.86@mail.ru
ORCID iD: 0000-0003-3375-9956
Cand. Sci. (Med.)
俄罗斯联邦, Chita参考
- Charmandari E., Tsigos C., Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259-284. doi: 10.1146/annurev.physiol.67.040403.120816.
- Дедов И.И., Мельниченко Г.А. Эндокринология. Москва: ГЭОТАР-Медиа; 2019. 1112 с.
- Dedov I.I., Melnichenko G.A. [Endocrinology]. Moscow: GEOTAR-Media; 2019. 1112 p. (In Russian).
- Nicholls J.J., Brassill N.J., Williams G.R., Bassett J.H.D. The skeletal consequences of thyrotoxicosis. J Endocrinol. 2012;213(3):209-221. doi: 10.1530/JOE-12-0059.
- Гусев К.А., Мироманов А.М., Мироманова Н.А., Витковский Ю.А. Полиморфизм гена EGFR-2073A>T и экспрессия ростового фактора EGF у больных с нарушением консолидации переломов длинных костей конечностей. Забайкальский медицинский вестник. 2016;3:25-29. Режим доступа: http://zabmedvestnik.ru/arhiv-nomerov/nomer-3-za-2016-god.
- Gusev K.A., Miromanov A.M., Miromanova N.A., Vitkovsky Yu.A. [Influence of polymorphism of gene EGFR-2073A>T on expression transforming growth factor EGF at patients with disturbance of consolidation of fractures of long bones of extremities]. Zabaikal’skii meditsinskii vestnik [The Transbaikalian Medical Bulletin]. 2016;3:25-29. Available from: http://zabmedvestnik.ru/arhiv-nomerov/nomer-3-za-2016-god. (In Russian).
- Корж Н.А., Дедух Н.В. Репаративная регенерация кости: современный взгляд на проблему. Стадии регенерации. Ортопедия, травматология и протезирование. 2006;1:77-84.
- Korzh N.A., Dedukh N.V. [Reparative bone regeneration: a modern perspective on the problem. Regeneration stages]. Ortopediya travmatologiya i protezirovanie [Orthopedics, Traumatology and Prosthetics]. 2006;1: 77-84. (In Russian).
- Kawai M., de Paula F.J., Rosen C.J. New insights into osteoporosis: the bone-fat connection. J Intern Med. 2012;272(4):317-329. doi: 10.1111/j.1365-2796.2012.02564.x.
- Mak W., Shao X., Dunstan C.R., Seibel M.J., Zhou H. Biphasic glucocorticoid-dependent regulation of Wnt expression and its inhibitors in mature osteoblastic cells. Calcif Tissue Int. 2009;85(6):538-545. doi: 10.1007/s00223-009-9303-1.
- Hartmann K., Koenen M., Schauer S., Wittig-Blaich S., Ahmad M., Baschant U. et al. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev. 2016;96(2):409-447. doi: 10.1152/physrev.00011.2015.
- Weinstein R.S., Hogan E.A., Borrelli M.J., Liachenko S., O’Brien C.A., Manolagas S.C. The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology. 2017;158(11):3817-3831. doi: 10.1210/en.2017-00662.
- Tu J., Henneicke H., Zhang Y., Stoner S., Cheng T.L., Schindeler A. et al. Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone, development. Bone. 2014;69:12-22. doi: 10.1016/j.bone.2014.08.016.
- Rapp A.E., Hachemi Y., Kemmler J., Koenen M., Tuckermann J., Ignatius A. Induced global deletion of glucocorticoid receptor impairs fracture healing. FASEB J. 2018;32(4):2235-2245. doi: 10.1096/fj.201700459RR.
- Jilka R.L. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40:1434-1446. doi: 10.1016/j.bone.2007.03.017.
- Kim J.-M., Choi J.S., Kim Y.-H., Jin S.H., Lim S., Jang H.-J. et al. An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. J Cell Physiol. 2013;228(3):617-626. doi: 10.1002/jcp.24171.
- Kousteni S., Bilezikian J.P. The cell biology of parathyroid hormone in osteoblasts. Curr Osteoporos Rep. 2008;6(2):72-76. doi: 10.1007/s11914-008-0013-9.
- Yu B., Zhao X., Yang C., Crane J., Xian L., Lu W. et al. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res. 2012;27(9):2001-2014. doi: 10.1002/jbmr.1663.
- Teitelbaum S.L. Bone resorption by osteoclasts. Science. 2000;289(5484):1504-1508.
- doi: 10.1126/science.289.5484.1504.
- Chiavistelli S., Giustina A., Mazziotti G. Parathyroid hormone pulsatility: physiological and clinical aspects. Bone Res. 2015;3:14049. doi: 10.1038/boneres.2014.49.
- Parisien M., Silverberg S.J., Shane E., de la Cruz L., Lindsay R., Bilezikian J.P. et al. The histomorphometry of bone in primary hyperparathyroidism: preservation of cancellous bone structure. J Clin Endocrinol Metab. 1990;70(4):930-938. doi: 10.1210/jcem-70-4-930.
- Wojda S.J., Donahue S.W. Parathyroid hormone for bone regeneration. J Orthop Res. 2018;36(10):2586-2594. doi: 10.1002/jor.24075.
- Hirsch P.F., Lester G.E., Talmage R.V. Calcitonin, an enigmatic hormone: does it have a function? J Musculoskelet Neuronal Interact. 2001;1(4):299-305.
- Keller J., Catala-Lehnen P., Huebner A.K., Jeschke A., Heckt T., Lueth A. et all. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat Commun. 2014;5:5215. doi: 10.1038/ncomms6215.
- Davies J. Procalcitonin. J Clin Pathol. 2015;68(9):675-679. doi: 10.1136/jclinpath-2014-202807.
- Vijayan A.L., Vanimaya, Ravindran S., Saikant R., Lakshmi S., Kartik R., Manoj G. Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J Intensive Care. 2017;5:51. doi: 10.1186/s40560-017-0246-8.
- Shen C.-J., Wu M.-S., Lin K.-H., Lin W.-L., Chen H.-C., Wu J.-Y. et al. The use of procalcitonin in the diagnosis of bone and joint infection: a systemic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2013;32(6):807-814. doi: 10.1007/s10096-012-1812-6.
- Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab. 2010;95(8):3569-3577. doi: 10.1210/jc.2010-0856.
- Vanderschueren D., Laurent M.R., Claessens F., Gielen E., Lagerquist M.K., Vandenput L. et al. Sex steroid actions in male bone. Endocr Rev. 2014;35(6):906-960. doi: 10.1210/er.2014-1024.
- Khosla S., Melton L.J. 3rd, Riggs B.L. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res. 2011;26(3):441-451. doi: 10.1002/jbmr.262.
- Khosla S., Amin S., Orwoll E. Osteoporosis in men. Endocr Rev. 2008;29(4):441-464. doi: 10.1210/er.2008-0002.
- Falahati-Nini A., Riggs B.L., Atkinson E.J., O’Fallon W.M., Eastell R., Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553-1560. doi: 10.1172/JCI10942.
- Manolagas S.C. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115-137. doi: 10.1210/edrv.21.2.0395.
- Riggs B.L. The mechanisms of estrogen regulation of bone resorption. J Clin Investig. 2000;106(10):1203-1204. doi: 10.1172/JCI11468.
- Cenci S., Weitzmann M.N., Roggia C., Namba N., Novack D., Woodring J. et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106(10):1229-1237. doi: 10.1172/JCI11066.
- Hofbauer L.C., Khosla S., Dunstan C.R., Lacey D.L., Boyle W.J., Riggs B.L. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2-12. doi: 0.1359/jbmr.2000.15.1.2.
- Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res. 1996;11(8):1043-1051. doi: 10.1002/jbmr.5650110802.
- Riggs B.L. The mechanisms of estrogen regulation of bone resorption. J Clin Invest. 2000;106(10):1203-1204. doi: 10.1172/JCI11468.
- Hadji P., Colli E., Regidor P.-A. Bone health in estrogen-free contraception. Osteoporos Int. 2019;30(12):2391-2400. doi: 10.1007/s00198-019-05103-6.
- Berger C., Goltzman D., Langsetmo L., Joseph L., Jackson S., Kreiger N. et al. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res. 2010;25(9):1948-1957. doi: 10.1002/jbmr.95.
- Kerrigan J.R., Rogol A.D. The impact of gonadal steroid hormone action on growth hormone secretion during childhood and adolescence. Endocr Rev. 1992;13(2):281-298. doi: 10.1210/edrv-13-2-281.
- Hofbauer L.C., Hicok K.C., Khosla S. Effects of gonadal and adrenal androgens in a novel androgen-responsive human osteoblastic cell line. J Cell Biochem. 1998;71(1):96-108.
- Hofbauer L.C., Hicok K.C., Chen D., Khosla S. Regulation of osteoprotegerin production by androgens and anti-androgens in human osteoblastic lineage cells. Eur J Endocrinol. 2002;147(2):269-273. doi: 10.1530/eje.0.1470269.
- Suda T., Takahashi N., Udagawa N., Jimi E., Gillespie M.T., Martin T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345-357. doi: 10.1210/edrv.20.3.0367.
- Veldhuis J.D., Bowers C.Y. Human GH pulsatility: an ensemble property regulated by age and gender. J Endocrinol Invest. 2003;26(9):799-813. doi: 10.1007/BF03345229.
- Wang J., Zhou J., Cheng C.M., Kopchick J.J., Bondy C.A. Evidence supporting dual, IGF-I-independent and IGF-I-dependent, roles for GH in promoting longitudinal bone growth. J Endocrinol. 2004;180(2):247-255. doi: 10.1677/joe.0.1800247.
- Lindsey R.C., Mohan S. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy. Mol Cell Endocrinol. 2016;432:44-55. doi: 10.1016/j.mce.2015.09.017.
- Locatelli V., Bianchi V.E. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int J Endocrinol. 2014;2014:235060. doi: 10.1155/2014/235060.
- Yakar S., Courtland H.-W., Clemmons D. IGF-1 and bone: New discoveries from mouse models. J Bone Miner Res. 2010;25(12):2543-2552. doi: 10.1002/jbmr.234.
- Singhal V., Goh B.C., Bouxsein M.L., Faugere M.-C., DiGirolamo D.J. Osteoblast-restricted Disruption of the Growth Hormone Receptor in Mice Results in Sexually Dimorphic Skeletal Phenotypes. Bone Res. 2013;1(1): 85-97. doi: 10.4248/BR201301006.
- Wu S., Yang W., De Luca F. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth. Endocrinology. 2015;156(7):2541-2551. doi: 10.1210/en.2014-1983.
- Zhang M., Faugere M.-C., Malluche H., Rosen C.J., Chernausek S.D., Clemens T.L. Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res. 2003;18(5):836-843. doi: 10.1359/jbmr.2003.18.5.836.
- Honda Y., Landale E.C., Strong D.D., Baylink D.J., Mohan S. Recombinant synthesis of insulin-like growth factor-binding protein-4 (IGFBP-4): Development, validation, and application of a radioimmunoassay for IGFBP-4 in human serum and other biological fluids. J Clin Endocrinol Metab. 1996;81(4):1389-1396. doi: 10.1210/jcem.81.4.8636339.
- Chevalley T., Strong D.D., Mohan S., Baylink D., Linkhart T.A. Evidence for a role for insulin-like growth factor binding proteins in glucocorticoid inhibition of normal human osteoblast-like cell proliferation. Eur J Endocrinol. 1996;134(5):591-601. doi: 10.1530/eje.0.1340591.
- Gabbitas B., Canalis E. Cortisol enhances the transcription of insulin-like growth factor-binding protein-6 in cultured osteoblasts. Endocrinology. 1996;137(5):1687-1692. doi: 10.1210/endo.137.5.8612502.
- Denger S., Bähr-Ivacevic T., Brand H., Reid G., Blake J., Seifert M. et al. Transcriptome profiling of estrogen-regulated genes in human primary osteoblasts reveals an osteoblast-specific regulation of the insulin-like growth factor binding protein 4 gene. Mol Endocrinol. 2008;22(2):361-379. doi: 10.1210/me.2007-0292.
- Qin X., Wergedal J.E., Rehage M., Tran K., Newton J., Lam P. et al. Pregnancy-associated plasma protein-A increases osteoblast proliferation in vitro and bone formation in vivo. Endocrinology. 2006;147(12):5653-5661. doi: 10.1210/en.2006-1055.
- Christians J.K., de Zwaan D.R., Fung S.H.Y. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice. PLoS One. 2013;8(2):e56260. doi: 10.1371/journal.pone.0056260.
- Mohan S., Bautista C.M., Wergedal J., Baylink D.J. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: a potential local regulator of IGF action. Proc Natl Acad Sci USA. 1989;86(21):8338-8342. doi: 10.1073/pnas.86.21.8338.
- Devlin R.D., Du Z., Buccilli V., Jorgetti V., Canalis E. Transgenic mice overexpressing insulin-like growth factor binding protein-5 display transiently decreased osteoblastic function and osteopenia. Endocrinology. 2002;143(10):3955-3962. doi: 10.1210/en.2002-220129.
- Zhao G., Monier-Faugere M.C., Langub M.C., Geng Z., Nakayama T., Pike J.W. et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141(7):2674-2682. doi: 10.1210/endo.141.7.7585.
- DiGirolamo D.J., Mukherjee A., Fulzele K., Gan Y., Cao X., Frank S.J. et al. Mode of growth hormone action in osteoblasts. J Biol Chem. 2007;282(43):31666-31674. doi: 10.1074/jbc.M705219200.
- Simpson H., Savine R., Sönksen P., Bengtsson B.A., Carlsson L., Christiansen J.S. et al. Growth hormone replacement therapy for adults: into the new millennium. Growth Horm IGF Res. 2002;12(1):1-33. doi: 10.1054/ghir.2001.0263.
- Laron Z., Kauli R. Fifty seven years of follow-up of the Israeli cohort of Laron Syndrome patients-From discovery to treatment. Growth Horm IGF Res. 2016;28:53-56. doi: 10.1016/j.ghir.2015.08.004.
- Bikle D., Majumdar S., Laib A., Powell-Braxton L., Rosen C., Beamer W. et al. The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res. 2001;16(12):2320-2329. doi: 10.1359/jbmr.2001.16.12.2320.
- Zhang W., Zhang L.C., Chen H., Tang P.F., Zhang L.H. Association between polymorphisms in insulin-like growth factor-1 and risk of osteoporosis. Genet Mol Res. 2015;14(3):7655-7660. doi: 10.4238/2015.July.13.10.
- Thomas J.D.J., Monson J.P. Adult GH deficiency throughout lifetime. Eur J Endocrinol. 2009;161(1): S97-S106. doi: 10.1530/EJE-09-0258.
- Claessen K.M., Kroon H.M., Pereira A.M., Appelman-Dijkstra N.M., Verstegen M.J., Kloppenburg M. et al. Progression of vertebral fractures despite long-term biochemical control of acromegaly: a prospective follow-up study. J Clin Endocrinol Metab. 2013;98(12):4808-4815. doi: 10.1210/jc.2013-2695.
- Mazziotti G., Bianchi A., Porcelli T., Mormando M., Maffezzoni F., Cristiano A. et al. Vertebral fractures in patients with acromegaly: a 3-year prospective study. J Clin Endocrinol Metab. 2013;98(8):3402-3410. doi: 10.1210/jc.2013-1460.
- Mormando M., Nasto L.A., Bianchi A., Mazziotti G., Giampietro A., Pola E. et al. GH receptor isoforms and skeletal fragility in acromegaly. Eur J Endocrinol. 2014;171(2):237-245. doi: 10.1530/EJE-14-0205.
- Nicholls J.J., Brassill M.J., Williams G.R., Bassett J.H. The skeletal consequences of thyrotoxicosis. J Endocrinol. 2012;213(3):209-221. doi: 10.1530/JOE-12-0059.
- Gorka J., Taylor-Gjevre R.M., Arnason T. Metabolic and clinical consequences of hyperthyroidism on bone density. Int J Endocrinol. 2013;2013:638727. doi: 10.1155/2013/638727.
- Harvey C.B., Bassett J.H., Maruvada P., Yen P.M., Williams G.R. The rat thyroid hormone receptor (TR) Deltabeta3 displays cell-, TR isoform-, and thyroid hormone response element-specific actions. Endocrinology. 2007;148(4):1764-1773. doi: 10.1210/en.2006-1248.
- Gouveia C.H. [The molecular and structural effects of thyroid hormone in bones]. Arq Bras Endocrinol Metabol. 2004;48(1):183-195. (In Portuguese). doi: 10.1590/s0004-27302004000100021.
- Wexler J.A., Sharretts J. Thyroid and bone. Endocrinol Metab Clin North Am. 2007;36(3):673-705, vi. doi: 10.1016/j.ecl.2007.04.005.
- O’Shea P.J., Bassett J.H., Sriskantharajah S., Ying H., Cheng S.Y., Williams G.R. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta. Mol Endocrinol. 2005;19(12):3045-3059. doi: 10.1210/me.2005-0224.
- Bassett J.H., Williams G.R. The skeletal phenotypes of TRalpha and TRbeta mutant mice. J Mol Endocrinol. 2009;42(4):269-282. doi: 10.1677/JME-08-0142.
- Harvey C.B., O’Shea P.J., Scott A.J., Robson H., Siebler T., Shalet S.M. et al. Molecular mechanisms of thyroid hormone effects on bone growth and function. Genet Mol Metab. 2002;75(1):17-30. doi: 10.1006/mgme.2001.3268.
- Bassett J.H., Williams G.R. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab. 2003;14(8):356-364. doi: 10.1016/s1043-2760(03)00144-9.
- Gauthier K., Plateroti M., Harvey C.B., Williams G.R., Weiss R.E., Refetoff S. et al. Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol. 2001;21(14):4748-4760. doi: 10.1128/MCB.21.14.4748-4760.2001.
- Gu W.X., Stern P.H., Madison L.D., Du G.G. Mutual up-regulation of thyroid hormone and parathyroid hormone receptors in rat osteoblastic osteosarcoma 17/2.8 cells. Endocrinology. 2001;142(1):157-164. doi: 10.1210/endo.142.1.7905.
- Gruber R., Czerwenka K., Wolf F., Ho G.M., Willheim M., Peterlik M. Expression of the vitamin D receptor, of estrogen and thyroid hormone receptor alpha- and beta-isoforms, and of the androgen receptor in cultures of native mouse bone marrow and of stromal/osteoblastic cells. Bone. 1999;24(5):465-473. doi: 10.1016/s8756-3282(99)00017-4.
- Bassett J.H., Williams G.R. Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone. 2008;43(3):418-426. doi: 10.1016/j.bone.2008.05.007.
- Bassett J., Williams G. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocrine Reviews. 2016;37(2):135-187. doi: 10.1210/er.2015-1106.
- Kosińska A., Syrenicz A., Kosiński B., Garanty-Bogacka B., Syrenicz M., Gromniak E. [Osteoporosis in thyroid diseases]. Endokrynol Pol. 2005;56(2):185-193. (In Polish).
- Hyppönen E., Läärä E., Reunanen A., Järvelin M.R., Virtanen S.M. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001;358(9292): 1500-1503. doi: 10.1016/S0140-6736(01)06580-1.
- Reddy P.A., Harinarayan C.V., Sachan A., Suresh V., Rajagopal G. Bone disease in thyrotoxicosis. Indian J Med Res. 2012;135(3):277-286.
- Abe E., Marians R., Yu W., Wu X., Ando T., Li Y. et al. TSH is a negative regulator of skeletal remodelling. Cell. 2003;115(2):151-162. doi: 10.1016/S0092-8674(03)00771-2.
- Tsai J., Janson A., Bucht E., Kindmark H., Marcus C., Stark A. et al. Weak evidence of thyrotropin receptors in primary cultures of human osteoblast-like cells. Calcif Tissue Int. 2004;74(5):486-491. doi: 10.1007/s00223-003-0108-3.
- Vestergaard P., Rejnmark L., Mosekilde L. Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int. 2005;77(3):139-144. doi: 10.1007/s00223-005-0068-x.
- González-Rodríguez L.A., Felici-Giovanini M.E., Haddock L. Thyroid dysfunction in an adult female population: A population-based study of Latin American Vertebral Osteoporosis Study (LAVOS) – Puerto Rico site. P R Health Sci J. 2013;32(2):57-62.
- Clement-Lacroix P., Ormandy C., Lepescheux L., Ammann P., Damotte D., Goffin V. et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 1999;140(1):96-105. doi: 10.1210/endo.140.1.6436.
- Charoenphandhu N., Tudpor K., Thongchote K., Saengamnart W., Puntheeranurak S., Krishnamra N. High-calcium diet modulates effects of long-term prolactin exposure on the cortical bone calcium content in ovariectomized rats. Am J Physiol Endocrinol Metab. 2007;292(2):E443-452. doi: 10.1152/ajpendo.00333.2006.
- Holt E., Lupsa B., Lee G., Bassyouni H., Peery H.E. Goodman’s Basic Medical Endocrinology, 5rd edn. Elsevier; 2021. 552 p.
- Momsen G., Schwarz P. A mathematical/physiological model of parathyroid hormone secretion in response to blood-ionized calcium lowering in vivo. Scand J Clin Lab Invest. 1997;57(5):381-394. doi: 10.3109/00365519709084585.
- Krishnamra N., Seemoung J. Effects of acute and long-term administration of prolactin on bone 45Ca uptake, calcium deposit, and calcium resorption in weaned, young, and mature rats. Can J Physiol Pharmacol. 1996;74(10):1157-1165.
- Thongchote K., Charoenphandhu N., Krishnamra N. High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci. 2008;58(1):39-45. doi: 10.2170/physiolsci.RP015007.
- Mazziotti G., Frara S., Giustina A. Pituitary Diseases and Bone. Endocr Rev. 2018;39(4):440-488. doi: 10.1210/er.2018-00005.
- Wildburger R., Zarkovic N., Tonkovic G., Skoric T., Frech S., Hartleb M. et al. Post-traumatic hormonal disturbances: prolactin as a link between head injury and enhanced osteogenesis. J Endocrinol Invest. 1998;21(2):78-86. doi: 10.1007/BF03350319.
补充文件
