Clinical, Genetic and Orthopedic Characteristics of Desbuquois Dysplasia

Cover Page

Cite item

Full Text

Abstract

Introduction. Desbuquois dysplasia is a rare skeletal dysplasia with an autosomal recessive inheritance, resembling to the group of multiple joint dislocations. The disease is caused by mutations in the CANT1 and XYLT1 genes, the protein products of which are involved in the degradation of proteoglycans, which play an important role in endochondral ossification. The polymorphism of clinical and radiological characteristics and the genetic heterogeneity of Desbuquois dysplasia necessitate the description of the phenotypic characteristics of patients with various types of mutations, which optimize diagnosis. Objective — description of the clinical and radiological characteristics of three Russian patients with Desbuquois dysplasia of types 1 and 2 with remarkable orthopedic manifestation, caused by mutations in the CANT1 and XYLT1 genes. Materials and Methods. Genealogical, clinical, radiographic and genetic data of three unrelated Russian patients aged 2 to 8 years was carried out. Genetic testing was carried out using clinical exome sequencing and methyl-sensitive PCR. Results. Two patients were diagnosed with type 1 disease due to a previously described homozygous mutation in the CANT1 gene: c.898C>T (p.Arg300Cys), and one — type 2 due to heterozygous mutations in the XYLT1 gene. One mutation: c.1651C>T (p.Arg551Cys) was detected during exome sequencing, and the second mutation: expansion of GGC repeats in the promoter region of the gene, revealed by methyl-sensitive PCR of the first exon of the gene. The main clinical signs of the disease were micromelic dwarfism, hypermobility in the joints and specific facial dysmorphisms, radiographic analysis revealed characteristic «monkey wrench» appearance of the proximal femur in all 3 patients, additional ossification center of the second metacarpal, advanced bone age and multiple dislocations in the joints. The patients also had extra-skeletal manifestations (congenital glaucoma, obstructive bronchitis, renal hypoplasia and congenital heart malformations). Conclusion. Genetic heterogeneity and the presence of polymorphism of clinical manifestations make it possible to consider sequencing of the clinical exome as the optimal method for diagnosing Desbuquois dysplasia types 1 and 2. Analysis of the literature and the results of our molecular genetic data indicate the possibility of expansion of the GGC repeat in the XYLT1 gene in patients with clinical manifestations of type 2 Desbuquois dysplasia.

About the authors

Tatyana V. Markova

Research Centre for Medical Genetics

Email: markova@medgen.ru
ORCID iD: 0000-0002-2672-6294

Cand. Sci. (Med.)

Russian Federation, Moscow

Vladimir M. Kenis

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Mechnikov North-Western State Medical University

Author for correspondence.
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485

Dr. Sci. (Med.)

Russian Federation, St. Petersburg

Evgeniy V. Melchenko

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: emelcheko@gmail.com
ORCID iD: 0000-0003-1139-5573

Cand. Sci. (Med.)

Russian Federation, St. Petersburg

Peter A. Sparber

Research Centre for Medical Genetics

Email: psparber93@gmail.com
ORCID iD: 0000-0002-9160-0794

младший научный сотрудник лаборатории функциональной геномики

Russian Federation, Moscow

Marina S. Petukhova

Research Centre for Medical Genetics

Email: petukhova@med-gen.ru
ORCID iD: 0000-0003-1286-3842

врач-генетик консультативного отделения

Russian Federation, Moscow

Igor O. Bychkov

Research Centre for Medical Genetics

Email: bychkov.nbo@gmail.com
ORCID iD: 0000-0002-6594-6126

научный сотрудник лаборатории наследственных болезней обмена веществ

Russian Federation, Moscow

Tatyana S. Nagornova

Research Centre for Medical Genetics

Email: t.korotkaya90@gmail.com
ORCID iD: 0000-0003-4527-4518

лабораторный генетик лаборатории селективного скрининга

Russian Federation, Moscow

Olga L. Shatokhina

Research Centre for Medical Genetics

Email: mironovich_333@mail.ru
ORCID iD: 0000-0003-0351-1271

Cand. Sci. (Med.)

Russian Federation, Moscow

Elena L. Dadali

Research Centre for Medical Genetics

Email: genclinic@yandex.ru
ORCID iD: 0000-0001-5602-2805

Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Desbuquois syndrome. ORPHA: 1425. The portal for rare diseases and orphan drugs: Orphanet. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=1425.
  2. Desbuquois G., Grenier B., Michel J., Rossignol C. Nanisme chondrodystrophique avec ossification anarchic et polymalformations chez deux soeurs. Arch Fr Pediatr.1966;23:573-587.
  3. Le Merrer M., Young I.D., Stanescu V., Maroteaux P. Desbuquois syndrome. Eur J Pediatr. 1991;150(11):793-796. doi: 10.1007/BF02026714.
  4. Mortier G.R., Cohn D.H., Cormier-Daire V., Hall C., Krakow D., Mundlos S. et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179(12):2393-2419. doi: 10.1002/ajmg.a.61366.
  5. Faivre L., Cormier-Daire V., Eliott A.M., Field F., Munnich A., Maroteaux P. et al. Desbuquois dysplasia, a reevaluation with abnormal and ‘normal’ hands: radiographic manifestations. Am J Med Genet A. 2004;124A(1):48-53. doi: 10.1002/ajmg.a.20440.
  6. Faivre L., Cormier-Daire V., Young I., Bracq H., Finidori G., Padovani J.P. et al. Long-term outcome in Desbuquois dysplasia: a follow-up in four adult patients. Am J Med Genet A. 2004;124A(1):54-59. doi: 10.1002/ajmg.a.20441.
  7. Huber C., Oules B., Bertoli M., Chami M., Fradin M., Alanay Y. et al. Identification of CANT1 mutations in Desbuquois dysplasia. Am J Hum Genet. 2009;85(5):706-710. doi: 10.1016/j.ajhg.2009.10.001.
  8. Laccone F., Schoner K., Krabichler B., Kluge B., Schwerdtfeger R., Schulze B. et al. Desbuquois dysplasia type I and fetal hydrops due to novel mutations in the CANT1 gene. Eur J Hum Genet. 2011;19(11):1133-1137. doi: 10.1038/ejhg.2011.101.
  9. Hall B.D. Lethality in Desbuquois dysplasia: three new cases. Pediatr Radiol. 2001;31(1):43-47. doi: 10.1007/s002470000358.
  10. Inoue S., Ishii A., Shirotani G., Tsutsumi M., Tsutsumi M., Ohta E., Nakamura M. et al. Case of Desbuquois dysplasia type 1: potentially lethal skeletal dysplasia. Pediatr Int. 2014;56(4):e26-9. doi: 10.1111/ped.12383.
  11. Kim O.H., Nishimura G., Song H.R., Matsui Y., Sakazume S., Yamada M. et al. A variant of Desbuquois dysplasia characterized by advanced carpal bone age, short metacarpals, and elongated phalanges: report of seven cases. Am J Med Genet A. 2010;152A(4):875-885. doi: 10.1002/ajmg.a.33347.
  12. Dai J., Kim O.H., Cho T.J., Miyake N., Song H.R., Karasugiet T. et al. A founder mutation of CANT1 common in Korean and Japanese Desbuquois dysplasia. J Hum Genet. 2011;56(5):398-400. doi: 10.1038/jhg.2011.28.
  13. Bui C., Huber C., Tuysuz B., Alanay Y., Alanay Y., Bole-Feysot C., Leroy J.G. et al. XYLT1 mutations in Desbuquois dysplasia type 2. Am J Hum Genet. 2014;94(3):405-414. doi: 10.1016/j.ajhg.2014.01.020.
  14. Nizon M., Huber C., De Leonardis F., Merrina R., Forlino A., Fradin M. et al. Further delineation of CANT1 phenotypic spectrum and demonstration of its role in proteoglycan synthesis. Hum Mutat. 2012;33(8): 1261-1266. doi: 10.1002/humu.22104.
  15. Paganini C., Monti L., Costantini R., Besio R., Lecci S., Biggiogera M. et al. Calcium activated nucleotidase 1 (CANT1) is critical for glycosaminoglycan biosynthesis in cartilage and endochondral ossification. Matrix Biol. 2019;81:70-90. doi: 10.1016/j.matbio.2018.11.002.
  16. Faust I., Böker K.O., Lichtenberg C., Kuhn J., Knabbe C., Hendig D. First description of the complete human xylosyltransferase-I promoter region. BMC Genet. 2014;15:129. doi: 10.1186/s12863-014-0129-0.
  17. LaCroix A.J., Stabley D., Sahraoui R., Adam M.P., Mehaffey M., Kernan K. et al. GGC Repeat Expansion and Exon 1 Methylation of XYLT1 Is a Common Pathogenic Variant in Baratela-Scott Syndrome. Am J Hum Genet. 2019;104(1):35-44. doi: 10.1016/j.ajhg.2018.11.005.
  18. Houdayer C., Ziegler A., Boussion F., Blesson S., Bris C., Toutain A. et al. Prenatal diagnosis of Des¬buquois dysplasia type 1 by whole exome se¬quencing before the occurrence of specific ultrasound signs. J Matern Fetal Neonatal Med. 2019;1-4. doi: 10.1080/14767058.2019.1657084.
  19. Furuichi T., Dai J., Cho T.J., Sakazume S., Ikema M., Matsui Y. et al. CANT1 mutation is also responsible for Desbuquois dysplasia, type 2 and Kim variant. J Med Genet. 2011;48(1):32-37. doi: 10.1136/jmg.2010.080226.
  20. Dai J., Liu J., Deng Y., Smith T.M., Lu M. Structure and protein design of a human platelet function inhibitor. Cell. 2004;116(5):649-659. doi: 10.1016/s0092-8674(04)00172-2.
  21. Jamsheer A., Olech E.M., Kozłowski K., Niedziela M., Sowińska-Seidler A., Obara-Moszyńska M. et al. Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency. J Hum Genet. 2016;61(7):577-583. doi: 10.1038/jhg.2016.30.
  22. Silveira C., Leal G.F., Cavalcanti D.P. Desbuquois dysplasia type II in a patient with a homozygous mutation in XYLT1 and new unusual findings. Am J Med Genet A. 2016;170(11):3043-3047. doi: 10.1002/ajmg.a.37858.
  23. Baratela W.A., Bober M.B., Tiller G.E., Okenfuss E., Ditro C., Duker A. et al. A newly recognized syndrome with characteristic facial features, skeletal dysplasia, and developmental delay. Am J Med Genet A. 2012;158A(8):1815-1822. doi: 10.1002/ajmg.a.3544.
  24. Баиндурашвили А.Г., Кенис В.М., Мельченко Е.В., Гриль Ф., Аль-Каисси А. Комплексное ортопедическое лечение пациентов с системными дисплазиями скелета. Травматология и ортопедия России. 2014;(1): 44-50. doi: 10.21823/2311-2905-2014-0-1-44-50. Baindurashvili A.G., Kenis V.M., Melchenko E.V., Grill F., Al-Kaissi A. [Complex orthopaedic management of patients with skeletal dysplasias]. Travmatologiya i Ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2014;(1):44-50. (In Russian). doi: 10.21823/2311-2905-2014-0-1-44-50.
  25. Маркова Т.В., Кенис В.М., Мельченко Е.В., Демина Н.А., Гундорова П., Нагорнова Т.С. и др. Клинико-генетические характеристики и ортопедические проявления синдрома Саула – Вильсона у двух российских больных. Ортопедия, травматология и восстановительная хирургия детского возраста. 2020;8(4):451-460. doi: 10.17816/PTORS33826. Markova T.V., Kenis V.M., Melchenko E.V., Demina N.A., Gundorova P., Nagornova T.S. et al. [Clinical and genetic characteristics and orthopedic manifestations of the saul-wilson syndrome in two russian patients]. Ortopediya, travmatologiya i vosstanovitel’naya khirurgiya detskogo vozrasta [Pediatric Traumatology, Orthopaedics and Reconstructive Surgery]. 2020;8(4):451-460. doi: 10.17816/PTORS33826.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Proband 1 — girl, 6 years 5 months of age:a — short stature with multiple deformities of the limbs and spine, deformation of the lower extremities due to bilateral knee dislocation hampers the ability to stand and walk independently; b — feet with adduction of the forefoot, the first toes are short, with characteristic valgus deformity

Download (41KB)
3. Fig. 2. X-rays of proband 1:a — AP X-ray of the lower limbs: “monkey wrench” shape of the femoral necks (white arrows); rotational dislocation of the knee — distal femur in the AP view (white circle), proximal tibia — in lateral view (black circle); dislocation of the patella (black arrow);b — AP X-ray of the spine: severe right-side lumbar scoliosis (white arrow);c — X-ray of the upper limb: varus deformity of the proximal humerus (white arrow), radial head subluxation (black arrow);d — AP X-rays of the hands: ulnar deviation secondary to the inclination of the distal radial joint surface (white arrows); short second metacarpals (black arrows); extra-phalanx of the second finger separated from second metacarpal and basal phalanx on the left side (black arrowhead) and fused with the phalanx on the right side (white arrowhead), bifid distal phalanx of the thumb (red arrow)

Download (51KB)
4. Fig 3. Proband 2 — boy, 8 years 5 months of age:а — proband 2: disproportionately short stature, multiple deformities of the limbs; dysmorphic facial features (round face, large eyes, flattening of the nasal ridge and midface); pectus carinatum;b — ulnar deviation of the hands; brachy-, campto- and clinodactyly more pronounced in the index fingers

Download (27KB)
5. Fig. 4. X-rays of proband 2:а — AP X-ray of the hips: “monkey wrench” type of the proximal femur (white arrows) and elongated minor trochanter (black arrows);b — AP X-ray of the knee joints: rotational dislocation (white arrows) and dislocation of the patella (black arrows);с — AP X-rays of the hands: flattened distal radius epiphyses (white arrows); extra-phalanges of the second digit is fused with the second metacarpal and basal phalanx on the left side (white arrowhead) and separated from the phalanx on the right side (black arrowhead); bifid distal phalanx of the thumb (red arrow)

Download (41KB)
6. Fig. 5. Proband 3 — boy, 2 years 8 months of age:а — disproportionately short stature with relatively short limbs, narrow chest, short neck, lumbar hyperlordosis, large head size, rounded face, protruding eyes, depressed nasal ridge, micrognathia;b — AP X-ray of the lower limbs and spine: “monkey wrench” shape of the proximal femur (white arrows), elongated and cone-shaped minor trochanter (black arrows); broad and shortened isthmus of the iliac bone (black arrowheads); mild scoliosis (red arrow);с — AP X-ray of the hands: advanced bone age, short metacarpals, broad phalanges

Download (31KB)
7. Fig. 6. Analysis of methylation of exon 1 of XYLT1 gene, visualization of methyl-sensitive PCR products;a — primers specific to methylated exon 1, the presence of a PCR reaction product indicates methylation of this region;b — primers specific to unmethylated exon 1;c — primers to the control methylated locus: 1 — length marker PUC19, 2 — healthy control, 3 — proband, 4 — sister of the proband, 5 — father of the proband, 6 — mother of the proband;d — analysis of allelic imbalance according to variant c.1651C> T, Senger chromatogram of the amplification product of the XYLT1 cDNA region of the proband

Download (12KB)

Copyright (c) 2021 Markova T.V., Kenis V.M., Melchenko E.V., Sparber P.A., Petukhova M.S., Bychkov I.O., Nagornova T.S., Shatokhina O.L., Dadali E.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».