ESR Investigation of the Interaction of Copper Nanoparticles Precursors with Polyethylenimine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The process of complex formation between polyethylenimine and copper cations in an aqueous solution, followed by isolation of copper nanoparticles, has been studied by means of ESR spectroscopy. It has been shown that in excess of the polymer in the solution the copper cation forms complex containing three nitrogen atoms in the coordination sphere, with distorted tetragonal geometry. The increase in copper concentration has led to the formation of the copper cation complex with water. Addition of the reducing agent NaBH4 to the studied solutions has led to the formation of copper nanoparticles accompanied by gradual disappearance of the ESR signal of Cu(II) and the appearance of the ESR signal typical of the mononuclear copper complexes with polyethylenimine.

Sobre autores

M. Motyakin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: asozerin@vstu.ru
119991, Moscow, Russia; 119334, Moscow, Russia

A. Ozerin

Volgograd State Technical University

Email: asozerin@vstu.ru
400005, Volgograd, Russia

I. Ionova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: asozerin@vstu.ru
119991, Moscow, Russia

F. Radchenko

Volgograd State Technical University

Email: asozerin@vstu.ru
400005, Volgograd, Russia

I. Novakov

Volgograd State Technical University

Autor responsável pela correspondência
Email: asozerin@vstu.ru
400005, Volgograd, Russia

Bibliografia

  1. Semenova A., Giles L.W., Vidallon M.L.P., Follink B., Brown P.L., Tabor R.F. // Langmuir. 2022. V. 38. № 34. P. 10585.
  2. Kim K., Lee J.W., Shin K.S. // ACS Appl. Mater. Interfaces. 2012. V. 4. P. 5498.
  3. Recent Development in Bio-nanocomposites for Biomedical Applications. New York.: Nova Sci. Publ. Inc., 2010.
  4. Ustyakina D.R., Chevtaev A.S., Tabunshchikov A.I., Ozerin A.S., Radchenko Ph.S., Novakov I.A. // Polymer Science B. 2019. V. 61. № 3. P. 261.
  5. Ottaviani M.F., Bossmann S., Turro N.J., Tomaliall D.A. // J. Am. Chem. Soc. 1994. V. 116. P. 661.
  6. Ottaviani. M.F., Montalti F., Turro N.J., Tomalia D.A. // J. Phys. Chem. B. 1997. V. 101. P. 158.
  7. Carone M., Moreno S., Cangiotti M., Ottaviani M.F., Wang P., Carloni R., Appelhans D. // Langmuir. 2020. V. 36. P. 12816.
  8. Кабанов Н.М., Кокорин А.И., Рогачева В.Б., Зезин А.Б. // Высокомолек. соед. А. 1979. Т. 21. № 1. С. 209.
  9. Alonso-Amigo M.G., Schlick S. // J. Phys. Chem. 1986. V. 90. P. 6353.
  10. Rex G.C., Schlick S. // J. Phys. Chem. 1985. V. 89. P. 3598.
  11. Chiarantini L., Cerasi A., Giorgi L., Formica M., Ottaviani M.F., Cangiotti M., Fusi V. // Bioconjugate Chem. 2003. V. 14. P. 1165.
  12. Danilczuk M., Schlick S., Coms F.D. // Macromolecules. 2013. V. 46. № 15. P. 6110.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (41KB)
3.

Baixar (40KB)
4.

Baixar (38KB)

Declaração de direitos autorais © М.В. Мотякин, А.С. Озерин, И.С. Ионова, Ф.С. Радченко, И.А. Новаков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies