О применении методов машинного обучения для предсказания точки адсорбционного перехода статических сополимеров
- Autores: Polotsky A.A.1, Ivanova A.S.1
-
Afiliações:
- Branch of the Federal State Budgetary Institution “Saint Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute' – Institute of High Molecular Compounds
- Edição: Volume 67, Nº 2 (2025)
- Páginas: 87-95
- Seção: ТЕОРИЯ И МОДЕЛИРОВАНИЕ
- URL: https://journals.rcsi.science/2308-1120/article/view/353943
- DOI: https://doi.org/10.31857/S2308112025020055
- ID: 353943
Citar
Resumo
Sobre autores
A. Polotsky
Branch of the Federal State Budgetary Institution “Saint Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute' – Institute of High Molecular Compounds
Email: alexey.polotsky@gmail.com
Russian Federation, 199004, Saint Petersburg, Bolshoy pr. V.O, 31
A. Ivanova
Branch of the Federal State Budgetary Institution “Saint Petersburg Nuclear Physics Institute named after B.P. Konstantinov of the National Research Center 'Kurchatov Institute' – Institute of High Molecular CompoundsRussian Federation, 199004, Saint Petersburg, Bolshoy pr. V.O, 31
Bibliografia
- Thompson S.W., Guimarães T.R., Zetterlund P.B. // Macromolecules. 2023. V. 56. № 23. P. 9711.
- Thompson S.W., Guimarães T.R., Zetterlund P.B. // Ind. Eng. Chem. Res. 2024. V. 63. № 15. P. 6766.
- Mohammadi Y., Penlidis A. // Adv. Theory Simul. 2019. V. 2. P. 180144.
- Ethier J.G., Casukhela R.K., Latimer J.J., Jacobsen M.D., Shantz A.B., Vaia R.A. // ACS Macro Lett. 2021. V. 10. № 6. P. 749.
- Arora A., Lin T.-S., Rebello N.J., Av-Ron S.H.M., Mochigase H., Olsen B.D. // ACS Macro Lett. 2021. V. 10. № 11. P. 1339.
- Volgin I.V., Batyr P.A., Matseevich A.V., Dobrovskiy A Yu., Andreeva M.V., Nazarychev V.M., Larin S.V., Goikhman M.Ya., Vizilter Yu.V., Askadskii A.A., Lyulin S.V. // ACS Omega. 2022. V. 7. № 48. P. 43678.
- Audus D.J., de Pablo J.J. // ACS Macro Lett. 2017. V. 6. № 10. P. 1078.
- Meyer T.A., Ramirez C., Tamasi M.J., Gormley A.J. // ACS Polym. Aur. 2023. V. 3. P. 141.
- Zhang K., Gong X., Jiang Y. // Adv. Funct. Mater. 2024. V. 34. № 24. P. 2315177.
- Okuyama H., Sugawara Y., Yamaguchi T. // ACS Appl. Mater. Int. 2024. V. 16. № 19. P. 25236.
- Palai D., Tahara H., Chikami S., Latag G.V., Maeda S., Komura C., Kurioka H., Hayashi T. // ACS Biomater. Sci. Eng. 2022. V. 8. № 9. P. 3765.
- Tang Y., Wei J., Liu Y., Chang Y., Zheng J. // Langmuir. 2024. V. 40. № 43. P. 22504.
- Su S., Masuda T., Takai M. // Langmuir. 2025. V. 41. № 11. P. 7534.
- Shi J., Quevillon M.J., Amorim Valença P.H., Whitmer J.K. // ACS Appl. Mater. Int. 2022. V. 14. № 32. P. 37161.
- Jin T., Coley C.W., Alexander-Katz A. // Macromolecules. 2023. V. 56. № 5. P. 1798.
- Polotsky А.А. // Polymer Science С. 2018. V. 60. № 1. P. 3.
- Lifson S. // J. Chem. Phys. 1964. V. 40. № 12. P. 3705.
- Гросберг А.Ю., Хохлов А.Р. Статистическая физика макромолекул. М.: Наука, 1989.
- Birshtein T.M. // Macromolecules. 1979. V. 12. № 4. P. 715.
- Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay Éd. // J. Machine Learn. Res. 2011. V. 12. P. 2825.
- Chollet F. Keras. 2015. https://keras.io
- Элбон К. // Машинное обучение с использованием Python. Сб. рецептов. СПб.: БХВ-Петербург, 2019.
- Verdhan V. // Supervised Learning with Python: Concepts and Practical Implementation Using Python. N.Y.: Apress, 2020.
- Soteros C.E., Whittington S.G. // J. Phys. A. Math. Theor. 2004. V. 37. P. 279.
- Polotsky A., Degenhard A., Schmid F. // J. Chem. Phys. 2009. V. 131. № 5. P. 054903.
- Khare S., Gourisaria M.K., Harshvardhan G.M., Joardar S., Singh V. // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1099. P. 012053.
Arquivos suplementares

