Complexes of an Anionic Surfactant with Chitosan and Its Hydrophobic Derivatives As Disinfectants against SARS-CoV-2
- Authors: Shibaev A.V.1, Ospennikov A.S.1, Kornilaeva G.V.2, Larichev V.F.2, Fedyakina I.T.2, Fu L.3, Chen Z.4, Yang Y.4, Karamov E.V.2,5, Turgiev A.S.2,5, Duan L.6, Liu J.7, Philippova O.E.1
-
Affiliations:
- Physics Department, Moscow State University
- Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS)
- Shanghai Key Laboratory of Chemical Biology, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC)
- Issue: Vol 65, No 5 (2023)
- Pages: 343-350
- Section: МЕДИЦИНСКИЕ ПОЛИМЕРЫ
- URL: https://journals.rcsi.science/2308-1120/article/view/233619
- DOI: https://doi.org/10.31857/S2308112023600114
- EDN: https://elibrary.ru/DCRAHG
- ID: 233619
Cite item
Abstract
This work is aimed at the preparation of complexes of chitosan and hydrophobically modified (HM) chitosan with an anionic surfactant sodium dodecylbenzene sulfonate (SDBS), and at the study of the virucidal activity of the complexes and their components against SARS-CoV-2. It is shown that the introduction of a sufficient amount (4 mol%) of hydrophobic n-dodecyl side groups provides the activity of HM chitosan against SARS-CoV-2 at moderate concentrations, at which unmodified chitosan and chitosan containing a lower amount of hydrophobic groups do not show any activity. Complexes of HM chitosan with SDBS are prepared, which is proven by fluorescence spectroscopy and isothermal titration calorimetry. It is discovered that HM chitosan/SDBS complex is more active than the polymer without surfactant, and an increase of the amount of hydrophobic groups enhances the activity
About the authors
A. V. Shibaev
Physics Department, Moscow State University
Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia
A. S. Ospennikov
Physics Department, Moscow State University
Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia
G. V. Kornilaeva
Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health
Email: shibaev@polly.phys.msu.ru
123098, Moscow, Russia
V. F. Larichev
Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health
Email: shibaev@polly.phys.msu.ru
123098, Moscow, Russia
I. T. Fedyakina
Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health
Email: shibaev@polly.phys.msu.ru
123098, Moscow, Russia
Lifeng Fu
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS)
Email: shibaev@polly.phys.msu.ru
100101, Beijing, China
Zhuo Chen
Shanghai Key Laboratory of Chemical Biology, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology
Email: shibaev@polly.phys.msu.ru
200237, Shanghai, China
Yangyang Yang
Shanghai Key Laboratory of Chemical Biology, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology
Email: shibaev@polly.phys.msu.ru
200237, Shanghai, China
E. V. Karamov
Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health; National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health
Email: shibaev@polly.phys.msu.ru
123098, Moscow, Russia; 127473, Moscow, Russia
A. S. Turgiev
Gamaleya National Research Center for Epidemiology and Microbiology of the Russian Ministry of Health; National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Russian Ministry of Health
Email: shibaev@polly.phys.msu.ru
123098, Moscow, Russia; 127473, Moscow, Russia
Liping Duan
NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases,National Institute of Parasitic Diseases, Chinese Center for Disease Control and
Email: shibaev@polly.phys.msu.ru
China, 200025, Prevention Shanghai
Jun Liu
NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention,Chinese Center for Disease Control and Prevention (China CDC)
Email: shibaev@polly.phys.msu.ru
China, 102206, Beijing
O. E. Philippova
Physics Department, Moscow State University
Author for correspondence.
Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia
References
- Cui J., Li F., Shi Z.-L. // Nat. Rev. Microbiol. 2019. V. 17. P. 181.
- Liu W.J., Wu G.Z. // Biosaf. Health. 2020. V. 2. P. 185.
- Gao G.F., Liu W.J. // China CDC Wkly. 2021. V. 3. P. 915.
- Schrank C.L., Minbiole K.P.C., Wuest W.M. // ACS Infect. Dis. 2020. V. 6. P. 1553.
- Vereshchagin A.N., Frolov N.A., Egorova K.S., Seitkalieva M.M., Ananikov V.P. // Int. J. Mol. Sci. 2021. V. 22. P. 6793.
- Baker N., Williams A.J., Tropsha A., Ekins S. // Pharm. Res. 2020. V. 37. P. 104.
- Ogilvie B.H., Solis-Leal A., Lopez J.B., Poole B.D., Ro-binson R.A., Berges B.K. // J. Hosp. Infect. 2021. V. 108. P. 142.
- Karamov E.V., Larichev V.F., Kornilaeva G.V., Fedyakina I.T., Turgiev A.S., Shibaev A.V., Molchanov V.S., Philippova O.E., Khokhlov A.R. // Int. J. Mol. Sci. 2022. V. 23. P. 6645.
- Korneyeva M., Hotta J., Lebing W., Rosenthal R.S., Franks L., Petteway Jr S.R. // Biologicals. 2002. V. 30. P. 153.
- Fletcher N.F., Meredit L.W., Tidswell E.L., Bryden S.R., Gonçalves-Carneiro D., Chaudhry Y., Shannon-Lowe C., Folan M.A., Lefteri D.A., Pingen M., Bailey D., McKimmie C.S., Baird A.W. // J. Gen. Virol. 2020. V. 101. P. 1090.
- Jahromi R., Mogharab V., Jahromi H., Avazpour A. // Food Chem. Toxicol. 2020. V. 145. P. 111702.
- Molchanov V.S., Shibaev A.V., Karamov E.V., Larichev V.F., Kornilaeva G.V., Fedyakina I.T., Turgiev A.S., Philippova O.E., Khokhlov A.R. // Polymers. 2022. V. 14. P. 2444.
- Kozhunova E.Y., Komarova G.A., Vyshivannaya O.V., Nasimova I.R., Kuvarina A.E., Sadykova V.S. // Int. J. Mol. Sci. 2022. V. 23. P. 4394.
- Bezrodnykh E.A., Berezin B.B., Kulikov S.N., Zelenikhin P.V., Vyshivannaya O.V., Blagodatskikh I.V., Tikhonov V.E. // Starch. 2021. V. 73. P. 2000234.
- Blagodatskikh I.V., Vyshivannaya O.V., Bezrodnykh E.A., Tikhonov V.E., Orlov V.N., Shabelnikova Y.L., Khokhlov A.R. // Int. J. Biol. Macromol. 2022. V. 214. P. 192.
- Rinaudo M. // Prog. Polym. Sci. 2006. V. 31. P. 603.
- Muzzarelli R.A.A. // Mar. Drugs 2010. V. 8. P. 292.
- Janes K.A., Calvo P., Alonso M.J. // Adv. Drug Delivery Rev. 2001. V. 47. P. 83.
- Kabanov A.V., Kabanov V.A. // Bioconjugate Chem. 1995. V. 6. P. 7.
- Spinner J.L., Oberoi H.S., Yorgensen Y.M., Poirier D.S., Burkhart D.S., Plante M., Evans J.T. // Vaccine. 2015. V. 33. P. 5845.
- De Matteis L., Alleva M., Serrano-Sevilla I., Garcia-Embid S., Stepien G., Moros M., de la Fuente J.M. // Mar. Drugs 2016. V. 14. P. 175.
- Philippova O.E., Korchagina E.V. // Polymer Science A. 2012. V. 54. № 7. P. 552.
- Safer A.-M., Leporatti S. // Int. J. Nanomedicine 2021. V. 16. P. 8141.
- Jaber N., Al-Remawi M., Al-Akayleh F., Al-Muhtaseb N., Al-Adham I.S.I., Collier P.J. // J. Appl. Microbiol. 2022. V. 132. P. 41.
- Mori Y., Ono T., Miyahira Y., Nguyen V.Q., Matsui T., Ishihara M. // Nanoscale Res. Lett. 2013. V. 8. P. 93.
- Loutfi S.A., Elberry M.H., Farroh K.Y., Mohamed H.T., Faraag A.H.I., Mousa S.A. // Int. J. Nanomedicine 2020. V. 15. P. 2699.
- Pyrk K., Milewska A., Nowakowska M., Szczubialka K., Kaminski K. Pat. EP 2 849 763 B1. 2017.
- Milewska A., Chi Y., Szczepanski A., Barreto-Duran E., Dabrowska A., Botwina P., Obloza M., Liu K., Liu D., Guo X., Ge Y., Li J., Cui L., Ochman M., Urlik M., Rodziewicz-Motowidlo S., Zhu F., Szczubialka K., Nowakowska M., Pyrc K. // J. Virology. 2021. V. 95. E01622-20.
- Desbrières J., Martinez C., Rinaudo M. // Int. J. Biol. Macromol. 1996. V.19. P. 21.
- Signini R., Campana Filho S.P. // Polym. Bull. 1999. V. 42. P. 159.
- Flint S.J., Racaniello V.R., Rall G.F., Skalka A.M., Enquist L.W. Principles of Virology. 4th ed. Washington: ASM Press, 2015.
- Kalyanasundaram K., Thomas J.K. // J. Am. Chem. Soc. 1977. V. 99. P. 2039.
- Simon M., Veit M., Osterrieder K., Gradzielski M. // Curr. Opin. Colloid Interface Sci. 2021. V. 55. P. 101479.
- Thalberg K., Lindman B., Karlström G. // J. Phys. Chem. 1991. V. 95. P. 6004.
- Piculell L. // Langmuir. 2013. V. 29. V. 33. P. 10313.
- Bezrodnykh E.A., Antonov Y.A., Berezin B.B., Kulikov S.N., Tikhonov V.E. // Carbohydr. Polym. 2021. V. 270. P. 118352.
- Onésippe C., Lagerge S. // Colloids Surf. A Physicochem. Eng. Asp. 2008. V. 330. P. 201.
- Chauhan S., Sharma K. // J. Chem. Thermodyn. 2014. V. 71. P. 205.
Supplementary files
