Morphological Transitions in Solutions of Macromolecules with Solvophilic Backbone and Orientationally Mobile Solvophobic Side Groups

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical model describing the self-assembly in dilute solutions of amphiphilic macromolecules containing the backbone built of the solvophilic units (the P groups) and the solvophobic side chains (the H groups) possessing orientational mobility relative to the backbone units has been elaborated. In the framework of strong segregation limit (The size of the insoluble regions of the formed micelles is on the order of the hydrophobic side chains), state diagrams of the solution have been calculated with and without accounting for the orientational entropy contribution of the side groups to the total free energy of the solution at different thermodynamic qualities of solvent for the macromolecules and the grafting density of the H groups; the regions of stability of spherical and cylindrical micelles as well as planar bilayers (vesicles) have been revealed. It has been found that the contribution of the orientational entropy significantly affects the view of the state diagrams. In the case of considering the orientational mobility, the conditions of the cylindrical micelle stability are very sensitive to the change in the grafting density of the side groups. This sensitivity can be the reason why the formation of long cylindrical (wormlike) micelles is not observed in experiments and computer simulations. As earlier demonstrated at a qualitative level, the orientational mobility of the side groups can lead to the emergence of the orientation-induced attraction between the polymer micelles (A. I. Buglakov, D. E. Larin, and V. V. Vasilevskaya, Polymer 232, 124160 (2021)). In this study, exact analytical calculations of the energy of orientation-induced attraction for the case of the interaction between two planar bilayer micelles has been performed. At distances being of the order of the size of the side H group, the orientation-induced attraction forces are much stronger than the van der Waals forces and, hence, the orientation-induced attraction can be decisive in the formation of large aggregates observed in experiments.

About the authors

G. A. Shuldyakov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: larin@polly.phys.msu.ru
119991, Moscow, Russia

A. I. Buglakov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: larin@polly.phys.msu.ru
119991, Moscow, Russia

D. E. Larin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Department of Physics, Moscow State University

Author for correspondence.
Email: larin@polly.phys.msu.ru
119991, Moscow, Russia; 119991, Moscow, Russia

References

  1. Kale T.S., Klaikherd A., Popere B., Thayumanavan S. // Langmuir. 2009. V. 25. P. 9660.
  2. Zhang J., Liu K., Müllen K., Yin M. // Chem. Commun. 2015. P. 5111541.
  3. Vasilevskaya V.V., Govorun E.N. // Polym. Rev. 2019. V. 59. P. 625.
  4. Zhang H., Ruckenstein E. // Macromolecules. 2000. V. 33. P. 814.
  5. Peng D., Zhang X., Huang X. // Polymer. 2006. V. 47. P. 6072.
  6. Ivanova A.S., Mikhailov I.V., Polotsky A.A., Darinskii A.A., Birshtein T.M., Borisov O.V. // J. Chem. Phys. 2020. V. 152. P. 081101.
  7. Borisov O.V., Polotsky A.A., Rud O.V., Zhulina E.B., Leermakers F.A.M., Birshtein T.M. // Soft Matter. 2014. V. 10. P. 2093.
  8. Liang X., Liu Y., Huang J., Wei L., Wang G. // Polym. Chem. 2015. V. 6. P. 466.
  9. Uhrig D., Mays J.W. // Macromolecules. 2002. V. 35. P. 7182.
  10. Rosen B.M., Wilson C.J., Wilson D.A., Peterca M., Imam M.R., Perec V. // Chem. Rev. 2009. V. 109. P. 6275.
  11. Zhulina E.B., Sheiko S.S., Borisov O.V. // Soft Matter. 2022. V. 18. P. 8714.
  12. Erukhimovich I., Theodorakis P.E., Paul W., Binder K. // J. Chem. Phys. 2011. V. 134. P. 054906.
  13. Buglakov A.I., Larin D.E., Vasilevskaya V.V. // Macromolecules. 2020. V. 53. № 12. P. 4783.
  14. Holmberg K., Jonsson B., Kronberg B., Lindman B. // Surfactants and Polymers in Aqueous Solution. Second Ed. New York: Wiley, 2002.
  15. Glagoleva A.A., Vasilevskaya V.V. // J. Colloid Interface Sci. 2021. V. 585. P. 408.
  16. Ahsan H. // J. Carbohydr. Chem. 2019. V. 38. P. 213.
  17. Wang X., Zhang H., Liang X., Shi L., Chen M., Wang X., Liu W., Ye Z. // Energy Fuels. 2021. V. 35. P. 1143.
  18. Rouzes C., Durand A., Leonard M., Dellacherie E.J. // Colloid Interface Sci. 2002. V. 253. P. 217.
  19. Lazutin A.A., Govorun E.N., Vasilevskaya V.V., Khokhlov A.R. // J. Chem. Phys. 2015. V. 142. P. 184904.
  20. Chen Y., Kushner A.M., Williams G.A., Guan Z. // Nat. Chem. 2012. V. 4. P. 467.
  21. Nichifor M. // Polymers. 2023. V. 15. P. 1065.
  22. Du X., Liu Y., Wang X., Yan H., Wang L., Qu L., Kong D., Qiao M., Wang L. // Mater. Sci. Eng. C. 2019. V. 104. P. 109930.
  23. Bianculli R.H., Mase J.D., Schulz M.D. // Macromolecules. 2020. V. 53. P. 9158.
  24. Wang F., Xiao J., Chen S., Sun H., Yang B., Jiang J., Zhou X., Du J. // Adv. Mater. 2018. V. 30. № 17. P. 1705674.
  25. Myrick J.M., Vendra V.K., Krishnan S. // Nanotechnol. Rev. 2014. V. 3. P. 319.
  26. Foght J.M., Gutnick D.L., Westlake D.W. // Appl. Environ. Microbiol. 1989. V. 55. P. 36.
  27. Wu Z., Li H., Zhao X., Ye F., Zhao G. // Carbohydr. Polym. V. 284. P. 119182.
  28. Akiyoshi K., Deguchi S., Moriguchi N., Yamaguchi S., Sunamoto J. // Macromolecules. 1993. V. 26. P. 3062.
  29. Sato T., Yang J., Terao K. // Polym. J. 2022. V. 54. P. 403.
  30. Peng D., Zhang X., Feng C., Lu G., Zhang S., Huang X. // Polymer. 2007. V. 48. P. 5250.
  31. Li Y., Zhang Y., Yang D., Feng C., Zhai S., Hu J., Lu G., Huang X. // Polym. Chem. 2009. V. 47. P. 6032.
  32. Ding A., Xu J., Gu G., Lu G., Huang X. // Sci. Rep. 2017. V. 7. P. 12601.
  33. Halamish H.M., Trousil J., Rak D., Knudsen K.D., Pavlova E., Nyström B., Štěpánek P., Sosnik A. // J. Colloid Interface Sci. V. 553. P. 512.
  34. Ярославов А.А., Аржаков М.С., Хохлов А.Р. // Вестн. РАН. 2022. Т. 92. С. 961.
  35. Zhang C., Zhang R., Zhu Y., Wei W., Gu Y., Liu X. // Mater. Lett. 2016. V. 164. P. 15.
  36. Besheer A., Hause G., Kressler J., Mäder K. // Biomacromolecules. 2007. V. 8. P. 359.
  37. Ma Y., Cao T., Webber S.E. // Macromolecules. 1998. V. 31. P. 1773.
  38. Kuroda K., Fujimoto K., Sunamoto J., Akiyoshi K. // Langmuir. 2002. V. 18. P. 3780.
  39. Michailova V.I., Momekova D.B., Velichkova H.A., Ivanov E.H., Kotsilkova R.K., Karashanova D.B., Mileva E.D., Dimitrov I.V., Rangelov S.M. // J. Phys. Chem. B. 2018. V. 122. № 22. P. 60728.
  40. Riemer S., Prévost S., Dzionara M., Gasser U., Gradzielski M. // Polymer. 2017. V. 128. P. 78.
  41. Buglakov A.I., Larin D.E., Vasilevskaya V.V. // Polymer. 2021. V. 232. P. 124160.
  42. Buglakov A.I., Vasilevskaya V.V. // J. Colloid Interface Sci. 2022. V. 614. P. 181.
  43. Glagoleva A.A., Vasilevskaya V.V., Khokhlov A.R. // Macromol. Theory Simul. 2015. V. 24. P. 393.
  44. Borisov O.V., Halperin A. // Langmuir. 1995. V. 11. P. 2911.
  45. Esquenet C., Terech P., Boué F., Buhler E. // Langmuir. 2004. V. 20. № 9. P. 3583.
  46. Borisov O.V., Halperin A. // Macromolecules. 1996. V. 29. P. 2612.
  47. Milner S.T., Witten T.A. // Macromolecules. 1992. V. 25. № 20. P. 5495.
  48. Semenov A.N., Joanny J.-F., Khokhlov A.R. // Macromolecules. 1995. V. 28. P. 1066.
  49. Halperin A. // Macromolecules. 1991. V. 24. P. 1418.
  50. Witten T.A. // J. phys. France. 1988. V. 49. P. 1055.
  51. Tam K.C., Ng W.K., Jenkins R.D. // J. Appl. Polym. Sci. 2006. V. 102. P. 5166.
  52. Pan J., Gao L., Sun W., Wang S., Shi X. // Macromolecules. 2021. V. 54. № 13. P. 5962.
  53. Wang S., Liu M., Gao L., Guo G., Huo Y. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 19554.
  54. Wang S., Li S., Gao L. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 43622.
  55. Yanagisawa Y., Nan Y., Okuro K., Aida T. // Science. 2018. V. 359. P. 72.
  56. Grosberg A.Yu., Khokhlov A.R. // Statistical Physics of Macromolecules. New York: AIP Press, 1994.
  57. Vasilevskaya V.V., Khalatur P.G., Khokhlov A.R. // Macromolecules. 2003. V. 36. № 26. P. 10103.
  58. Maresov E.A., Semenov A.N. // Macromolecules. 2008. V. 41. P. 9439.
  59. Subbotin A.V., Semenov A.N. // Polymer Science C. 2012. V. 54. № 1. P. 36.
  60. Larin D.E., Govorun E.N. // Polymer Science A. 2019. V. 61. № 5. P. 710.
  61. Israelachvilli J.N. // Intermolecular and Surface Forces. San Diego: Elsevier, 2011.
  62. Helfrich W.Z. // Naturforsch. 1973. V. 28. P. 693.
  63. Larin D.E., Glagoleva A.A., Govorun E.N., Vasilevskaya V.V. // Polymer. 2018. V. 146. P. 230.
  64. Lifshitz I.M., Grosberg A.Y., Khokhlov A.R. // Rev. Mod. Phys. 1978. V. 50. P. 683.
  65. Flory P.J. // Principles of Polymer Chemistry. Ithaca: Cornell Univ. Press, 1953.
  66. Pramod P.S., Takamura K., Chaphekar S., Balasubramanian N., Jayakannan M. // Biomacromolecules. 2012. V. 13. P. 3627.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (291KB)
3.

Download (317KB)
4.

Download (67KB)
5.

Download (102KB)
6.

Download (596KB)
7.

Download (30KB)
8.

Download (41KB)

Copyright (c) 2023 Г.А. Шульдяков, А.И. Буглаков, Д.Е. Ларин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies