Thermodynamics of Interaction between Poly(perfluorosulfonic acid) Nafion and Water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermodynamics of interaction between poly(perfluorosulfonic acid) Nafion and water is studied by isothermal sorption and microcalorimetry. The concentration dependences of energy and entropy parameters of mixing of Nafion aqueous solutions are determined. It is shown that the Gibbs energy and the enthalpy of mixing are negative while the entropy of mixing is positive over the entire range of solution compositions. The experimental water sorption isotherms and the concentration dependences of the enthalpy of dilution of aqueous solutions are analyzed in terms of the thermodynamic model allowing for pair nonvalence interactions in solution, nonequilibrium glassy structure of the polymer, and effects of the dissociation of ionic sulfo groups of Nafion. The calculated value of the Flory–Huggins parameter is 1.48, and the value of its enthalpy component is close to zero.

About the authors

S. D. Chernyuk

Ural Federal University named after the first President of Russia B. N. Eltsin; Institute of Solid State Chemistry, Urals Branch, Russian Academy of Sciences

Email: univerekb@mail.ru
620020, Yekaterinburg, Russia; 620049, Yekaterinburg, Russia

A. P. Safronov

Ural Federal University named after the first President of Russia B. N. Eltsin; Institute of Electrophysics, Urals Branch, Russian Academy of Sciences

Email: univerekb@mail.ru
620020, Yekaterinburg, Russia; 620016, Yekaterinburg, Russia

L. V. Adamova

Ural Federal University named after the first President of Russia B. N. Eltsin

Email: univerekb@mail.ru
620020, Yekaterinburg, Russia

O. V. Bushkova


Institute of Solid State Chemistry, Urals Branch, Russian Academy of Sciences; Institute of Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: univerekb@mail.ru
620049, Yekaterinburg, Russia; 142432, Chernogolovka, Moscow oblast, Russia

References

  1. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. № 3. P. 987.
  2. Kim J., Yamasaki K., Ishimoto H., Takata Y. // Polymers. 2020. V. 1. № 3. P. 1730.
  3. Mazzapioda L., Lo Vecchio C., Danyliv O., Baglio V., Martinelli A., Navarra M. A. // Polymers. 2020. V. 12. № 3. P. 2019.
  4. Haubold H.G., Vad T., Jungbluth H., Hiller P. // Electrochim. Acta. 2001. V. 46. № 10. P. 1559–1563.
  5. Yeager H.L., Eisenberg A. // ACS Symp. Ser. Washington: ACS, 1982. V. 180. Ch. 4. P. 41.
  6. Schmidt-Rohr K., Chen Q. // Nature Mater. 2008. V. 7. P. 75.
  7. Ivanova N.A., Spasov D.D., Grigoriev S.A., Fateev V.N. // Polymers. 2022. V. 14. № 20. P. 4395.
  8. Thampan T., Malhotra S., Tang H., Datta R. // J. Electrochem. Soc. 2000. V. 147. № 9. P. 3242.
  9. Morris D.R., Sun X. // J. Appl. Polym. Sci. 1993. V. 50. № 8. P. 1445.
  10. Pineri M., Volino F., Escoubes M. // J. Polym. Sci., Polym. Phys. 1985. V. 23. № 10. P. 2009.
  11. Zawodzinski T.A., Springer T.E., Davey J., Jestel R., Lopez C., Valerio J., Gottesfeld S. // J. Electrochem. Soc. 1993. V. 140. № 7. P. 1981.
  12. Laporta M., Pegoraro M., Zanderighi L. // Polym. Chem. Chem. Phys. 1999. V. 1. № 19. P. 4619.
  13. Zawodzinski T.A., Derouin C., Radzinski S., Sherman R.J., Smith V.T., Springer T.E., Gottesfeld S. // J. Electrochem. Soc. 1993. V. 140. № 4. P. 1041.
  14. James P.J., Elliott J.A., McMaster T.J., Newton J.M., Elliott A.M., Hanna S., Miles M.J. // J. Mater. Sci. 2000. V. 35. № 20. P. 5111.
  15. Hinatsu J.T., Mizuhata M., Takenaka H. // J. Electrochem. Soc. 1994. V. 141. № 6. P. 1493.
  16. Vallieres C., Winkelmann D., Roizard D., Favre E., Scharfer P., Kind M. // J. Membr. Sci. 2006. V. 278. № 1–2. P. 357.
  17. Choi P., Datta R. // ACS Div. Fuel Chem. Prepr. 2003. V. 48. № 1. P. 300.
  18. Weber A.Z., Newman J. // J. Electrochem. Soc. A 2004. V. 151. № 2. P. 311.
  19. Reucroft P.J., Rivin D., Schneider N.S. // Polymer. 2002. V. 43. № 19. P. 5157.
  20. Benoit R.L., Figeys D. // Can. J. Chem. 1991. V. 69. № 12. P. 1985.
  21. Noppel M. // J. Geophys. Res.: Atmospheres. 2000. V. 105. № 15. P. 19779.
  22. Newsham D.M.T., Mendez-Lecanda E.J. // J. Chem. Thermodyn. 1982. V. 14. № 3. P. 291.
  23. Ostrovskii V.E., Gostev B.V. // J. Therm. Anal. 1996. V. 46. № 2. P. 397.
  24. Kusoglu A., Savagatrup S., Clark K.T., Weber A.Z. // Macromolecules. 2012. V. 45. № 18. P. 7467.
  25. Kim M.H., Glinka C.J., Grot S.A., Grot W.G. // Macromolecules. 2006. V. 39. № 14. P. 4775.
  26. Shi S.W., Dursch T.J., Blake C., Mukundan R., Borup R.L., Weber A.Z., Kusoglu A. // J. Polym. Sci., Polym. Phys. 2016. V. 54. № 5. P. 570.
  27. Li J.S., Yang X., Tang H.L., Pan M. // J. Membr. Sci. 2010. V. 361. № 1–2. P. 38.
  28. Safronov A.P., Adamova L.V. // Polymer Science A. 2002. V. 44. № 4. P. 408.
  29. Safronov A.P., Terziyan T.V. // Polymer Science A. 2008. V. 50. № 7. P. 733.
  30. Yeo R.S. // Polymer. 1980. V. 21. № 4. P. 432.
  31. Mourey T.H., Slater L.A., Galipo R.C., Koestner R.J. // J. Chromatogr. A. 2011. V. 1218. № 34. P. 5801.
  32. Чалых А.Е., Герасимов В.К., Чертков В.Г. // Высокомолек. соед. Б. 1994. Т. 36. № 12. С. 2077.
  33. Тагер А.А. Физико-химия полимеров. М.: Рипол Классик, 1978.
  34. Safronov A.P., Adamova L.V., Blokhina A.S., Kamalov I.A., Shabadrov P.A. // Polymer Science A. 2015. V. 57. № 1. P. 33.
  35. Chu D., Tryk D., Gervasio D., Yeager E.B. // J. Electroanal. Chem. 1989. V. 272. № 1–2. P. 277.
  36. Choi P., Jalani N.H., Datta R. // J. Electrochem. Soc. 2005. V. 152. № 3. E123.
  37. Wang D., Cornelius C.J. // J. Polym. Sci., Polym. Phys. 2017. V. 55. № 5. P. 435.
  38. Shinoda K. // J. Phys. Chem. 1977. V. 81. № 13. P. 1300.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (27KB)
3.

Download (61KB)
4.

Download (84KB)
5.

Download (42KB)
6.

Download (75KB)
7.

Download (162KB)

Copyright (c) 2023 С.Д. Чернюк, А.П. Сафронов, Л.В. Адамова, О.В. Бушкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies