Heat shock protein Hsp70: prerequisites for use as a medicinal product


如何引用文章

详细

Heat shock protein Hsp70 is one of the main cytoprotection components under the action of various external stimuli. The analysis of the literature data shows that nowadays, the researches’ overwhelming evidence has proven the role of Hsp70 as a biological target for the drug development; however, the ideas about its use as a drug are often multidirectional.

The aim of the article is to analyze and generalize the literature data on the features of the physiological functions of heat shock protein Hsp 70, and indicate the possibilities of its use for the pharmacological correction of various pathological conditions.

Materials and methods. In the process of selecting material for writing this review article, such databases as Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer, Publications, ResearchIndex, Ingenta, PubMed, KEGG, etc. were used The following words and word combinations were selected as markers for identifying the literature: Hsp70, Hsp70 stroke, Hsp70 neuroprotection, Hsp70 cytoprotection, recombinant drugs.

Results. In this review, the pharmacology of one of the key members of this family, Hsp70, was focused on. The literary analysis confirms that this molecule is an endogenous regulator of many physiological processes and demonstrates tissue protective effects in modeling ischemic, neurodegenerative and inflammatory processes. The use of recombinant exogenous Hsp70 mimics the endogenous function of the protein, indicating the absence of a number of typical limitations characteristic of pharmacotherapy with high molecular weight compounds, such as immunogenicity, a rapid degradation by proteases, or a low penetration of histohematogenous barriers.

Conclusion. Thus, Hsp70 may become a promising agent for clinical trials as a drug for the treatment of patients with neurological, immunological, and cardiovascular profiles.

作者简介

Vladimir Pokrovsky

Belgorod State National Research University (NRU “BelSU”)

编辑信件的主要联系方式.
Email: vmpokrovsky@yandex.ru
ORCID iD: 0000-0003-3138-2075

6th year student

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Evgeniy Patrakhanov

Belgorod State National Research University (NRU “BelSU”)

Email: pateval7@gmail.com
ORCID iD: 0000-0002-8415-4562

6th year student of the Medical Institute

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Oleg Antsiferov

Belgorod State National Research University (NRU “BelSU”)

Email: antsiferov@bsu.edu.ru
ORCID iD: 0000-0001-6439-2419

Senior Lecturer, Department of Faculty Therapy

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Inga Kolesnik

Belgorod State National Research University (NRU “BelSU”)

Email: kolesnik_inga@mail.ru

sociate Professor of the Department of Pharmacology and Clinical Pharmacology

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Anastasia Belashova

Belgorod State National Research University (NRU “BelSU”)

Email: belashova_av@mail.ru
ORCID iD: 0000-0001-9737-6378

student of Medical Institute

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Valeria Soldatova

Belgorod State National Research University (NRU “BelSU”)

Email: lorsoldatova@gmail.com
ORCID iD: 0000-0002-9970-4109

postgraduate student of the Department of Pharmacology and Clinical Pharmacology

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Olga Pokopeiko

First Moscow State Medical University n. a. I.M. Sechenov (Sechenov University)

Email: OPokopejko@mail.ru

4th year student

俄罗斯联邦, Bldg. 2, 8, Trubetskaya St., Moscow, 119991

Anastasia Karagodina

Belgorod State National Research University (NRU “BelSU”)

Email: anastasiavolmedic@gmail.com
ORCID iD: 0000-0001-9440-5866

6th year student, the Medical Institute

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Ivan Arkhipov

Belgorod State National Research University (NRU “BelSU”)

Email: iaarkhipovbsu@gmail.com

6th year student of the Medical Institute

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Diana Voronina

Belgorod State National Research University (NRU “BelSU”)

Email: diana0085@inbox.ru

Research Institute of Pharmacology of Living Systems

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

Daria Sushkova

Belgorod State National Research University (NRU “BelSU”)

Email: maslova_d@bsu.edu.ru

Junior Researcher, Research Institute of Pharmacology of Living Systems

俄罗斯联邦, 85, Pobeda St., Belgorod, 308015

参考

  1. Schlesinger M.J. Heat shock proteins. J Biol Chem. 1990 Jul 25;265(21):12111-4.
  2. Ferat-Osorio E, Sánchez-Anaya A, Gutiérrez-Mendoza M, Boscó-Gárate I, Wong-Baeza I, Pastelin-Palacios R, Pedraza-Alva G, Bonifaz LC, Cortés-Reynosa P, Pérez-Salazar E, Arriaga-Pizano L, López-Macías C, Rosenstein Y, Isibasi A. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. J Inflamm (Lond). 2014 Jul 12;11:19. doi: 10.1186/1476-9255-11-19.
  3. Meng W, Clerico EM, McArthur N, Gierasch L. M. Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Proceedings of the National Academy of Sciences. 2018 Nov; 115(47):11970–75; doi: 10.1073/pnas.1811105115.
  4. Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 – a master regulator in protein degradation. FEBS Lett. 2017 Sep;591(17):2648–60. doi: 10.1002/1873-3468.12751.
  5. Acebrón SP, Fernández-Sáiz V, Taneva SG, Moro F, Muga A. DnaJ recruits DnaK to protein aggregates. J Biol Chem. 2008 Jan 18;283(3):1381–90. doi: 10.1074/jbc.M706189200.
  6. Assessment of Socio-Economic Development Forecast for the Russian Federation in 2019–2024. Finance: Theory and Practice. 2018;22(6):153–6. doi: 10.26794/2587-5671-2018-22-6-153-156. Russian
  7. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014 Sep;13(9):655–72. doi: 10.1038/nrd4363.
  8. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013 Jan;81(1):136–47. doi: 10.1111/cbdd.12055.
  9. Brocchieri L, Conway de Macario E, Macario AJ. Hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol. 2008 Jan 23;8:19. doi: 10.1186/1471-2148-8-19.
  10. Daugaard M, Jäättelä M, Rohde M. Hsp70-2 is required for tumor cell growth and survival. Cell Cycle. 2005; 4 (Issue 7): 877–80. doi: 10.4161/cc.4.7.1838.
  11. Taylor IR, Ahmad A, Wu T, Nordhues BA, Bhullar A, Gestwicki JE, Zuiderweg ERP. The disorderly conduct of Hsc70 and its interaction with the Alzheimer’s-related Tau protein. J Biol Chem. 2018 Jul 6;293(27):10796–80. doi: 10.1074/jbc.RA118.002234.
  12. Doyle SM, Genest O, Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol. 2013 Oct;14(10):617–29. doi: 10.1038/nrm3660.
  13. Acebrón SP, Fernández-Sáiz V, Taneva SG, Moro F, Muga A. DnaJ recruits DnaK to protein aggregates. J Biol Chem. 2008 Jan 18;283(3):1381–90. doi: 10.1074/jbc.M706189200.
  14. Ahmad A, Bhattacharya A, McDonald RA, Cordes M, Ellington B, Bertelsen EB, Zuiderweg ER. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18966–71. doi: 10.1073/pnas.1111220108.
  15. Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci. 2015 Apr 7;2:10. doi: 10.3389/fmolb.2015.00010.
  16. Gao T, Newton AC. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem. 2002 Aug 30;277(35):31585–92. doi: 10.1074/jbc.M204335200.
  17. Wang ML, Tuli R, Manner PA, Sharkey PF, Hall DJ, Tuan RS. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. J Orthop Res. 2003 Jul;21(4):697–707. doi: 10.1016/S0736-0266(02)00241-3.
  18. Zhao H, Michaelis ML, Blagg BS. Hsp90 modulation for the treatment of Alzheimer’s disease. Adv Pharmacol. 2012;64:1–25. doi: 10.1016/B978-0-12-394816-8.00001-5.
  19. Lanneau D, Wettstein G, Bonniaud P, Garrido C. Heat shock proteins: cell protection through protein triage. ScientificWorldJournal. 2010 Aug 3;10:1543–52. doi: 10.1100/tsw.2010.152.
  20. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem. 2002 Nov 29;277(48):45920–7. doi: 10.1074/jbc.M204196200.
  21. Okafor CC, Haleem-Smith H, Laqueriere P, Manner PA, Tuan RS. Particulate endocytosis mediates biological responses of human mesenchymal stem cells to titanium wear debris. J Orthop Res. 2006 Mar;24(3):461–73. doi: 10.1002/jor.20075.
  22. Kobayashi SD, Voyich JM, Whitney AR, DeLeo FR. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol. 2005 Dec;78(6):1408–18. doi: 10.1189/jlb.0605289.
  23. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005 Oct;115(10):2665–72. doi: 10.1172/JCI26252.
  24. Schmitt E, Parcellier A, Gurbuxani S, Cande C, Hammann A, Morales MC, Hunt CR, Dix DJ, Kroemer RT, Giordanetto F, Jäättelä M, Penninger JM, Pance A, Kroemer G, Garrido C. Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant. Cancer Res. 2003 Dec 1;63(23):8233–40.
  25. Matsumori Y, Northington FJ, Hong SM, Kayama T, Sheldon RA, Vexler ZS, et al. Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke 2006; 37 (Issue 2): 507–12. doi: 10.1161/01.STR.0000199057.00365.20.
  26. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A, Annavarapu S, Mouttaki A, Sondarva G, Wei S, Wu J, Djeu J, Bhalla K. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood. 2005 Feb 1;105(3):1246–55. doi: 10.1182/blood-2004-05-2041.
  27. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun. 2010;2(3):238–47. doi: 10.1159/000296508.
  28. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996 May 31;271(22):12687–90. doi: 10.1074/jbc.271.22.12687.
  29. Pang Q, Keeble W, Christianson TA, Faulkner GR, Bagby GC. FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-gamma/TNF-alpha-mediated cytotoxicity. EMBO J. 2001 Aug 15;20(16):4478–89. doi: 10.1093/emboj/20.16.4478.
  30. Pang Q, Christianson TA, Keeble W, Koretsky T, Bagby GC. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem. 2002 Dec 20;277(51):49638–43. doi: 10.1074/jbc.M209386200.
  31. Thirstrup K, Sotty F, Montezinho LC, Badolo L, Thougaard A, Kristjánsson M, Jensen T, Watson S, Nielsen SM. Linking HSP90 target occupancy to HSP70 induction and efficacy in mouse brain. Pharmacol Res. 2016 Feb;104:197–205. doi: 10.1016/j.phrs.2015.12.028.
  32. Purandhar K, Jena PK, Prajapati B, Rajput P, Seshadri S. Understanding the role of heat shock protein isoforms in male fertility, aging and apoptosis. World J Mens Health. 2014 Dec;32(3):123–32. doi: 10.5534/wjmh.2014.32.3.123.
  33. Jiang B, Liang P, Deng G, Tu Z, Liu M, Xiao X. Increased stability of Bcl-2 in HSP70-mediated protection against apoptosis induced by oxidative stress. Cell Stress Chaperones. 2011 Mar;16(2):143–52. doi: 10.1007/s12192-010-0226-6.
  34. Crowe DL, Sinha UK. p53 apoptotic response to DNA damage dependent on bcl2 but not bax in head and neck squamous cell carcinoma lines. Head Neck. 2006 Jan;28(1):15–23. doi: 10.1002/hed.20319.
  35. Akakura S, Yoshida M, Yoneda Y, Horinouchi S. A role for Hsc70 in regulating nucleocytoplasmic transport of a temperature-sensitive p53 (p53Val-135). J Biol Chem. 2001 May 4;276(18):14649–57. doi: 10.1074/jbc.M100200200.
  36. Tsukahara F, Maru Y. Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. J Biol Chem. 2004 Mar 5;279(10):8867–72. doi: 10.1074/jbc.M308848200.
  37. Lu D, Xu A, Mai H, Zhao J, Zhang C, Qi R, Wang H, Lu D, Zhu L. The synergistic effects of heat shock protein 70 and ginsenoside Rg1 against tert-butyl hydroperoxide damage model in vitro. Oxid Med Cell Longev. 2015;2015:437127. doi: 10.1155/2015/437127.
  38. Manucha W, Carrizo L, Ruete C, Vallés PG. Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction. BJU Int. 2007 Jul;100(1):191–8. doi: 10.1111/j.1464-410X.2007.06840.x.
  39. Manucha W, Kurbán F, Mazzei L, Benardón ME, Bocanegra V, Tosi MR, Vallés P. eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. Eur J Pharmacol. 2011 Jan 15;650(2-3):487–95. doi: 10.1016/j.ejphar.2010.09.059.
  40. Mansilla MJ, Costa C, Eixarch H, Tepavcevic V, Castillo M, Martin R, Lubetzki C, Aigrot MS, Montalban X, Espejo C. Hsp70 regulates immune response in experimental autoimmune encephalomyelitis. PLoS One. 2014 Aug 25;9(8):e105737. doi: 10.1371/journal.pone.0105737.
  41. Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones. 2015 Nov;20(6):893–906. doi: 10.1007/s12192-015-0622-z.
  42. Sharp FR, Lu A, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab. 2000 Jul;20(7):1011–32. doi: 10.1097/00004647-200007000-00001.
  43. Doeppner TR, Nagel F, Dietz GP, Weise J, Tönges L, Schwarting S, Bähr M. TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2009 Jun;29(6):1187–96. doi: 10.1038/jcbfm.2009.44.
  44. Hulina A, Grdić Rajković M, Jakšić Despot D, Jelić D, Dojder A, Čepelak I, Rumora L. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones. 2018 May;23(3):373–84. doi: 10.1007/s12192-017-0847-0.
  45. Zhan X, Ander BP, Liao IH, Hansen JE, Kim C, Clements D, Weisbart RH, Nishimura RN, Sharp FR. Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats. Stroke. 2010 Mar;41(3):538–43. doi: 10.1161/STROKEAHA.109.572537.
  46. Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 1995;36(4):305–15. doi: 10.1007/BF00689048.
  47. Porter JR, Fritz CC, Depew KM. Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol. 2010 Jun;14(3):412–20. doi: 10.1016/j.cbpa.2010.03.019.
  48. Doeppner TR, Ewert TA, Tönges L, Herz J, Zechariah A, ElAli A, Ludwig AK, Giebel B, Nagel F, Dietz GP, Weise J, Hermann DM, Bähr M. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells. 2012 Jun;30(6):1297–310. doi: 10.1002/stem.1098.
  49. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23.
  50. Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells. 2016 Mar 18;5(1):12. doi: 10.3390/cells5010012.
  51. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86. doi: 10.1186/1476-4598-12-86.
  52. Wang CH, Chou PC, Chung FT. et al. Heat shock protein70 is implicated in modulating NF-κB activation in alveolar macrophages of patients with active pulmonary tuberculosis. Sci Rep. 2017;7:1214. doi: 10.1038/s41598-017-01405-z.
  53. Hulina-Tomašković A, Somborac-Bačura A, Grdić Rajković M, Bosnar M, Samaržija M, Rumora L. Effects of extracellular Hsp70 and cigarette smoke on differentiated THP-1 cells and human monocyte-derived macrophages. Mol Immunol. 2019 Jul;111:53–63. doi: 10.1016/j.molimm.2019.04.002.
  54. Somensi N, Brum PO, de Miranda Ramos V, Gasparotto J, Zanotto-Filho A, Rostirolla DC, da Silva Morrone M, Moreira JCF, Pens Gelain D. Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells. Cell Physiol Biochem. 2017;42(6):2507–2522. doi: 10.1159/000480213.
  55. Luo X, Zuo X, Zhou Y, Zhang B, Shi Y, Liu M, Wang K, McMillian DR, Xiao X. Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Res Ther. 2008;10(2):R41. doi: 10.1186/ar2399.
  56. Mortaz E, Redegeld FA, Nijkamp FP, Wong HR, Engels F. Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway. Exp Hematol. 2006 Jan;34(1):8–18. doi: 10.1016/j.exphem.2005.10.012.
  57. Gurskiy YG, Garbuz DG, Soshnikova NV, Krasnov AN, Deikin A, Lazarev VF, Sverchinskyi D, Margulis BA, Zatsepina OG, Karpov VL, Belzhelarskaya SN, Feoktistova E, Georgieva SG, Evgen’ev MB. The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice. Cell Stress Chaperones. 2016 Nov;21(6):1055–1064. doi: 10.1007/s12192-016-0729-x.

补充文件

附件文件
动作
1. JATS XML
2. Figure 1 – Model of the Hsp70 oligomerization assembly line. Note: Cellular stress changes chaperone conformation, which facilitates Hsp 70 oligomerization. Co-chaperones and associated substrates bind to Hsp 70 oligomer, forming active chaperone complex

下载 (126KB)
3. Figure 2 – Interaction of Hsp70 with apoptosis and inflammation regulating proteins

下载 (94KB)

版权所有 © Pokrovsky V.M., Patrakhanov E.A., Antsiferov O.V., Kolesnik I.M., Belashova A.V., Soldatova V.A., Pokopeiko O.N., Karagodina A.Y., Arkhipov I.A., Voronina D.G., Sushkova D.N., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 
##common.cookie##