INFLUENCE OF SPEED, TIME OF HOMOGENIZATION, TYPE OF SURFACE ACTIVE SUBSTANCE ON THE SIZE OF PENTOXYPHILLINE NANOPARTICLES BASED ON POLY-DL-LAKTIDE-CO-GLICOLIDE


如何引用文章

全文:

详细

Nanopharmacology is a set of methods and techniques used in the creation, study, production and use of nanostructures (size about 1–700 nm) with new chemical, physical, and biological properties. For a long time pharmacologists have been working on molecular, and sometimes even on a submolecular level for synthesizing new drugs and explaining their mechanism of action. Thanks to this, the interest of pharmacology in nanotechnology is connected with new ways of obtaining and using medicines. One way of obtaining new forms of drugs is the synthesis of nanoparticles, since they allow the active substance to overcome the protective barriers of the body such as, for example, the immune system. Due to the fact that the surface of nanoparticles (nanocapsules) is multilayered, their resistance to the action of the protective mechanisms of the body increases, which allows the drug to retain the activity of the pharmacological action, as well as its structure for a longer time. The possibility of penetration through biological barriers, tissue-specificity, rate of drug release depends largely on the size and surface properties of nanoparticles.The aim of our study was to study the influence of such important factors as time, homogenization rate and the type of surface active substance, on the size of the obtained nanoparticles of pentoxifylline based on poly-DL-lactide-co-glycolide (PLGA).Materials and methods. The research was carried out using the information retrieval database (PubMed), as well as the results of our own research.Results and discussion. It has been found that the dispersion phase of the sample, in which polyvinyl alcohol was used as the surfactant, had the smallest size, particularly, the average hydrodynamic radius of the particles amounted to 175.4 nm. The influence of the speed and time of homogenization on the size of nano particles of pentoxifylline based on PLGA was experimentally proved. Also, microphotographs of nanoparticles of pentoxifylline based on poly-DL-lactide-coglycolide (PLGA) are presented.Conclusion.Our studies prove the effect of the speed and time of homogenization, as well as the type of surfactant, on the size of nanoparticles of pentoxifylline based on poly-DL-lactide-co-glycolide. As a result of the studies, the procedure for obtaining nanoparticles of pentoxifylline was adjusted. 

作者简介

T. Timchenko

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: akmivan@mail.ru

A. Blinov

Institute of Electric Power Engineering, Electronics and Nanotechnologies FGAOU VO SKFU

Email: fake@neicon.ru

A. Serov

Institute of Electric Power Engineering, Electronics and Nanotechnologies FGAOU VO SKFU

Email: fake@neicon.ru

L. Shcherbakova

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: fake@neicon.ru

V. Kompantsev

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: fake@neicon.ru

O. Мarkova

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: fake@neicon.ru

A. Medvetskiy

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: fake@neicon.ru

A. Platonova

Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University

Email: fake@neicon.ru

参考

  1. Бегдуллаев А.К., Маншарипова А.Т., Джусипов А.К., Абылайулы Ж.А. ПРОБЛЕМА НАПРАВЛЕННОГО ТРАНСПОРТА ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ В КЛИНИЧЕСКОЙ ПРАКТИКЕ // Терапевтический вестник. 2008. № 1. С. 32–36.
  2. Ивонин А.Г., Пименов Е.В., Оборин В.А., Девришов Д.А., Копылов С.Н. НАПРАВЛЕННЫЙ ТРАНСПОРТ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ: СОВРЕМЕННОЕ СОСТОЯНИЕ ВОПРОСА И ПЕРСПЕКТИВЫ // Известия Коми научного центра УрО РАН. 2012. № 1. С. 46–55.
  3. Чазов Е.И., Смирнов В.Н., Торчилин В.П. НАПРАВЛЕННЫЙ ТРАНСПОРТ ЛЕКАРСТВ: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ // Журнал Всесоюзного химического общества им. Д.И. Менделеева. 1987. Т. 32. № 5. С. 485–487.
  4. Шляхто Е.В. ИННОВАЦИОННЫЕ НАНОТЕХНОЛОГИИ В МЕДИЦИНЕ И БИОЛОГИИ // Инновации. 2008. № 6. С. 54–59.
  5. Мейдер В.А. НАНОТЕХНОЛОГИЯ КАК НОВАЯ РЕАЛЬНОСТЬ // Здравый смысл. 2011. № 3. URL: http://razumru.ru/humanism/journal/60/authors.htm/ (дата обращения: 22.02.2017).
  6. Ebbesen M., Jensen T.G. NANOMEDICINE: TECHNIQUES, POTENTIALS, AND ETHICAL IMPLICATIONS // J. Biomed. Biotechnol. 2006. N. 5. P. 515–516. doi: 10.1155/JBB/2006/51516
  7. Young M. B., MacConell L., Sarin V., Trautmann M., Herbert P. ENCAPSULATION OF EXENATIDE IN POLY-(D,L-LACTIDE-CO-GLYCOLIDE) MICROSPHERES PRODUCED AN INVESTIGATIONAL LONG-ACTING ONCE-WEEKLY FORMULATION FOR TYPE 2 DIABETES // Diabetes Technol Ther. 2011. No. 13. P. 1145–1154. doi: 10.1089/dia.2011.0050
  8. Минько Н.И., Строкова В.В., Жерновский И.В., Нарцев В.М. Методы получения и свойства нанообьектов. Флинта: Наука, 2009. 168 с.
  9. Тишков Т.М., Погребняк А.В., Погребняк Л.В. СОВРЕМЕННЫЕ ВСПОМОГАТЕЛЬНЫЕ ВЕЩЕСТВА // Современные проблемы науки и образования. 2015. № 2 (1). URL: https://science-education.ru/ru/article/view?id=22742/(дата обращения: 22.02.2017). doi: 10.17513/spno.2015.2
  10. Тимченко Т.В., Щербакова Л.И., Компанцев В.А. ПОЛИ-D,L-ЛАКТИД-КО-ГЛИКОЛИД: МЕТОДЫ ПОЛУЧЕНИЯ, СВОЙСТВА И ИСПОЛЬЗОВАНИЕ ДЛЯ РАЗРАБОТКИ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ СО СРЕДСТВАМИ МИКРО- И НАНОДОСТАВКИ // Современные проблемы науки и образования. 2015. №4. URL: (дата обращения: 17.07.2016).
  11. Кузнецова И.Г., Северин С.Е. ИСПОЛЬЗОВАНИЕ СОПОЛИМЕРА МОЛОЧНОЙ И ГЛИКОЛЕВОЙ КИСЛОТ ДЛЯ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ЛЕКАРСТВЕННЫХ ФОРМ // Разработка и регистрация лекарственных средств. 2013. №5. C. 30–38.
  12. Квинх Буй Тхи Зыонг, Блынская Е.В., Аляутдин Р.Н., Раменская Г.В., Балабаньян В.Ю. ФАРМАКОКИНЕТИЧЕСКОЕ ИЗУЧЕНИЕ НАНОСОМАЛЬНОЙ И СВОБОДНОЙ ФОРМ СПАРФЛОКСАЦИНА // Фармация. 2010. № 2. С. 42–44.
  13. Климова О. В., Годованный А.В., Рябцева М.С., Воронцов Е. А. , Северин Е.С. ИЗУЧЕНИЕ НАНОСОМАЛЬНОЙ ЛЕКАРСТВЕННОЙ ФОРМЫ ЛОМЕФЛОКСАЦИНА, ПОЛУЧЕННОЙ НА ОСНОВЕ СОПОЛИМЕРОВ МОЛОЧНОЙ И ГЛИКОЛЕВОЙ КИСЛОТ НА НАЛИЧИЕ СПЕЦИФИЧЕСКОЙ АКТИВНОСТИ И ПРОЛОНГИРОВАННОГО ЭФФЕКТА // Молекулярная медицина. 2010. № 5.
  14. Dutta R.C. DRUG CARRIERS IN PHARMACEUTICAL DESIGN: PROMISES AND PROGRESS // Curr. Pharm. 2007. No. 7. P. 761–769.
  15. Euliss L.E. IMPARTING SIZE, SHAPE, AND COMPOSITION CONTROL OF MATERIALS FOR NANOMEDICINE // Chem. Soc. Rev. 2006. N 35 (11). P. 1095-104. doi: 10.1039/b600913c
  16. Medvedeva N.V., Ipatova O.M., Ivanov luD, Drozhzhin A.I., Archakov A.I. NANOBIOTECHNOLOGY AND NANOMEDICINE // Biomed Khim. 2006. No. 52 (6). P. 529–546.
  17. Cai Q., Wang L. , Deng G., Liu J., Chen Q., Chen Z. SYSTEMIC DELIVERY TO CENTRAL NERVOUS SYSTEM BY ENGINEERED PLGA NANOPARTICLES // Am J Transl Res. 2016. No. 8(2). P. 749–764.

版权所有 © Timchenko T.V., Blinov A.V., Serov A.V., Shcherbakova L.I., Kompantsev V.A., Мarkova O.M., Medvetskiy A.I., Platonova A.Y., 2017

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
 
##common.cookie##