В6.А-Dysfprmd/GeneJ mice as a genetic model of dysferlinopathy

Cover Page

Cite item

Abstract

The aim of the work was behavioral and pathomorphological phenotyping of the mice knockout for the DYSF gene, which plays an important role in the development and progression of dysferlinopathy.

Materials and methods. A B6.A-Dysfprmd/GeneJ (Bla/J) mice subline was used in the work. During the study, a muscle activity was determined basing on the following tests: “Inverted grid”, “Grip strength”, “Wire Hanging”, “Weight-loaded swimming”, Vertical Pole”. Histological and immunofluorescent examinations of skeletal muscles (m. gastrocnemius, m. tibialis) were performed. The presence and distribution of the dysferlin protein was assessed, and general histological changes in the skeletal muscle characteristics of mice at the age of 12 and 24 weeks, were described. A morphometric analysis with the determination of the following parameters was performed: the proportion of necrotic muscle fibers; the proportion of fibers with centrally located nuclei; the mean muscle fiber diameter.

Results. The “Grip strength” test and the “Weight-loaded swimming” test revealed a decrease in the strength of the forelimbs and endurance in the studied mice of the Bla/J subline compared to the control line. The safety of physical performance was checked using the “Wire Hanging” test and the “Vertical Pole” test, which showed a statistically significant difference between the studied mice and control. The coordination of movements and muscle strength of the limbs examined in the “Inverted Grid” test did not change in these age marks. Decreased grip strength of the forelimbs, decreased physical endurance with age, reflects the progression of the underlying muscular disease. Histological methods in the skeletal muscles revealed signs of a myopathic damage pattern: necrotic muscle fibers, moderate lympho-macrophage infiltration, an increase in the proportion of fibers with centrally located nuclei, and an increase in the average fiber diameter compared to the control. The dysferlin protein was not found out in the muscle tissues.

Conclusion. Taking into account the results of the tests performed, it was shown that the absence of Dysf-/- gene expression in Bla/J subline mice led to muscular dystrophy with the onset of the development of phenotypic disease manifestations at the age of 12 weeks and their peak at 24 weeks. Histopathological phenotypic manifestations of the disease are generally nonspecific and corresponded to the data of intravital pathoanatomical examination in diferlinopathy patients. The mice of the studied subline Bla/J are a representative model of dysferlinopathy and can be used to evaluate new therapeutic agents for the treatment of this disease.

About the authors

Mikhail V. Korokin

Belgorod State National Research University

Author for correspondence.
Email: korokin@bsu.edu.ru
ORCID iD: 0000-0001-5402-0697

Doctor of Sciences (Medicine), Associate Professor of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Elena V. Kuzubova

Belgorod State National Research University

Email: 1015artek1015@mail.ru
ORCID iD: 0000-0003-2425-5027

Junior Researcher, Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Alexandra I. Radchenko

Belgorod State National Research University

Email: sandrinkaradchenko@gmail.com
ORCID iD: 0000-0002-4554-2116

Junior Researcher of Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Roman V. Deev

North-Western State Medical University named after I.I. Mechnikov; PJSC “Human Stem Cells Institute”

Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841

Candidate of Sciences (Medicine), Associate Professor, Acting Head of the Department of Pathological Anatomy, Director for Science

Russian Federation, 41, Kirochnaya Str., St. Petersburg, 191015; Bld. A, 10, 60-Letiya Oktyabrya Ave., Moscow, 117292

Ivan A. Yakovlev

LLC “Genotarget”

Email: ivan@ivan-ya.ru
ORCID iD: 0000-0001-8127-4078

General Director

Russian Federation, 48/7, Nobel Str., Skolkovo Innovation Center, Moscow, 121205

Aleksey V. Deikin

Belgorod State National Research University

Email: alexei@deikin.ru
ORCID iD: 0000-0001-9960-0863

Candidate of Sciences (Biology), Associate Professor of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Nikita S. Zhunusov

Belgorod State National Research University

Email: nzhunu@mail.ru
ORCID iD: 0000-0002-1969-3615

Assistant of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Anastasia M. Krayushkina

Belgorod State National Research University

Email: krayushkina_2016@mail.ru
ORCID iD: 0000-0002-6830-3820

Assistant of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Vladimir M. Pokrovsky

Belgorod State National Research University

Email: pokrovskiy@bsu.edu.ru
ORCID iD: 0000-0002-1493-3376

Assistant of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Olesya A. Puchenkova

Belgorod State National Research University

Email: lesya759@yandex.ru
ORCID iD: 0000-0002-7657-0937

Resident of the Medical Institute

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Kirill D. Chaprov

Belgorod State National Research University; Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS)

Email: chapkir@gmail.com
ORCID iD: 0000-0002-0258-1879

Junior Researcher of Laboratory for Modeling and Gene Therapy of Human Diseases, Junior Researcher

Russian Federation, 85, Pobedy Str., Belgorod, 308015; 1, Severny Driveway, Chernogolovka, 142432

Natalya V. Ekimova

Belgorod State National Research University

Email: ekimova@bsu.edu.ru
ORCID iD: 0000-0002-3629-048X

Assistant of the Department of Pharmacology and Clinical Pharmacology

Russian Federation, 85, Pobedy Str., Belgorod, 308015

Sergey N. Bardakov

S. M. Kirov Military Medical Academy

Email: epistaxis@mail.ru
ORCID iD: 0000-0002-3804-6245

Neurologist, Lecturer of the Department of Nervous Diseases

Russian Federation, 6, Academician Lebedev Str., St. Petersburg, 194044

Olga N. Chernova

North-Western State Medical University named after I.I. Mechnikov

Email: olgachernova92@yandex.ru
ORCID iD: 0000-0001-6310-9319

Assistant of the Department of Human Morphology

Russian Federation, 41, Kirochnaya Str., St. Petersburg, 191015

Aleksey M. Emelin

Belgorod State National Research University; North-Western State Medical University named after I.I. Mechnikov

Email: eamar40rn@gmail.com
ORCID iD: 0000-0003-4109-0105

Assistant of the Department of Pathological Anatomy, Postgraduate Student of the Department of Pathological Anatomy

Russian Federation, 85, Pobedy Str., Belgorod, 308015; 41, Kirochnaya Str., St. Petersburg, 191015

Igor S. Limaev

North-Western State Medical University named after I.I. Mechnikov

Email: ig.limaev@gmail.com
ORCID iD: 0000-0002-0994-9787

Senior Assistant of the Department of Pathological Anatomy

Russian Federation, 41, Kirochnaya Str., St. Petersburg, 191015

References

  1. Reash NF, James MK, Alfano LN, Mayhew AG, Jacobs M, Iammarino MA, Holsten S, Sakamoto C, Tateishi T, Yajima H, Duong T, de Wolf B, Gee R, Bharucha-Goebel DX, Bravver E, Mori-Yoshimura M, Bushby K, Rufibach LE, Straub V, Lowes LP; Jain COS Consortium. Comparison of strength testing modalities in dysferlinopathy. Muscle Nerve. 2022 Aug;66(2):159–66. doi: 10.1002/mus.27570
  2. Contreras-Cubas C, Barajas-Olmos F, Frayre-Martínez MI, Siordia-Reyes G, Guízar-Sánchez CC, García-Ortiz H, Orozco L, Baca V. Dysferlinopathy misdiagnosed with juvenile polymyositis in the pre-symptomatic stage of hyperCKemia: a case report and literature review. BMC Med Genomics. 2022;15(1):139. doi: 10.1186/s12920-022-01284-y
  3. Bardakov SN, Tsargush VA, Carlier PG, Nikitin SS, Kurbatov SA, Titova AA, Umakhanova ZR, Akhmedova PG, Magomedova RM, Zheleznyak IS, Emelyantsev AA, Berezhnaya EN, A Yakovlev I, Isaev AA, Deev RV. Magnetic resonance imaging pattern variability in dysferlinopathy. Acta Myol. 2021 Dec 31;40(4):158–71. doi: 10.36185/2532-1900-059
  4. Seo K, Kim EK, Choi J, Kim DS, Shin JH. Functional recovery of a novel knockin mouse model of dysferlinopathy by readthrough of nonsense mutation. Mol Ther Methods Clin Dev. 2021 May 1;21:702–9. doi: 10.1016/j.omtm.2021.04.015
  5. Kokubu Y, Nagino T, Sasa K, Oikawa T, Miyake K, Kume A, Fukuda M, Fuse H, Tozawa R, Sakurai H. Phenotypic Drug Screening for Dysferlinopathy Using Patient-Derived Induced Pluripotent Stem Cells. Stem Cells Transl Med. 2019 Oct;8(10):1017–29. doi: 10.1002/sctm.18-0280
  6. Korokin MV, Soldatov VO, Gudyrev OS, Koklin IS, Taran EI, Mishenin MO, Korokina LV, Kochkarov AA, Pokrovsky MV, Varaksin MV, Chupakhin ON. The role of cortisol metabolism in the realization of pathogenetic links in the development of osteoporosis – the rationale for the search for new pharmacotherapeutic targets (review). Research Results in Biomedicine. 2022;8(4):457–73. doi: 10.18413/2658-6533-2022-8-4-0-5. Russian
  7. Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve. 2016 Nov;54(5):821–35. doi: 10.1002/mus.25367
  8. Kuzubova EV, Radchenko AI, Pokrovsky VM, Patrakhanov EA, Novikova AA, Stepenko YuV, Deikin AV. Pathological conditions associated with tau protein: mechanisms of development and possible biological targets for pharmacological correction of tau proteinopathy (review). Research Results in Biomedicine. 2022; 8(4):474–94. doi: 10.18413/2658-6533-2022-8-4-0-6. Russian
  9. Moore U, Jacobs M, James MK, Mayhew AG, Fernandez-Torron R, Feng J, Cnaan A, Eagle M, Bettinson K, Rufibach LE, Lofra RM, Blamire AM, Carlier PG, Mittal P, Lowes LP, Alfano L, Rose K, Duong T, Berry KM, Montiel-Morillo E, Pedrosa-Hernández I, Holsten S, Sanjak M, Ashida A, Sakamoto C, Tateishi T, Yajima H, Canal A, Ollivier G, Decostre V, Mendez JB, Sánchez-Aguilera Praxedes N, Thiele S, Siener C, Shierbecker J, Florence JM, Vandevelde B, DeWolf B, Hutchence M, Gee R, Prügel J, Maron E, Hilsden H, Lochmüller H, Grieben U, Spuler S, Tesi Rocha C, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Harms M, Pestronk A, Krause S, Schreiber- Katz O, Walter MC, Paradas C, Hogrel JY, Stojkovic T, Takeda S, Mori-Yoshimura M, Bravver E, Sparks S, Díaz-Manera J, Bello L, Semplicini C, Pegoraro E, Mendell JR, Bushby K, Straub V; Jain COS Consortium. Assessment of disease progression in dysferlinopathy: A 1-year cohort study. Neurology. 2019 Jan 9;92(5):e461–74. doi: 10.1212/WNL.0000000000006858
  10. Harris E, Bladen CL, Mayhew A, James M, Bettinson K, Moore U, Smith FE, Rufibach L, Cnaan A, Bharucha-Goebel DX, Blamire AM, Bravver E, Carlier PG, Day JW, Díaz-Manera J, Eagle M, Grieben U, Harms M, Jones KJ, Lochmüller H, Mendell JR, Mori-Yoshimura M, Paradas C, Pegoraro E, Pestronk A, Salort-Campana E, Schreiber- Katz O, Semplicini C, Spuler S, Stojkovic T, Straub V, Takeda S, Rocha CT, Walter MC, Bushby K; Jain COS Consortium. The Clinical Outcome Study for dysferlinopathy: An international multicenter study. Neurol Genet. 2016 Aug 4;2(4):e89. doi: 10.1212/NXG.0000000000000089
  11. Jacobs MB, James MK, Lowes LP, Alfano LN, Eagle M, Muni Lofra R, Moore U, Feng J, Rufibach LE, Rose K, Duong T, Bello L, Pedrosa-Hernández I, Holsten S, Sakamoto C, Canal A, Sanchez-Aguilera Práxedes N, Thiele S, Siener C, Vandevelde B, DeWolf B, Maron E, Guglieri M, Hogrel JY, Blamire AM, Carlier PG, Spuler S, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Pestronk A, Walter MC, Paradas C, Stojkovic T, Mori-Yoshimura M, Bravver E, Díaz-Manera J, Pegoraro E, Mendell JR; Jain COS Consortium, Mayhew AG, Straub V. Assessing Dysferlinopathy Patients Over Three Years With a New Motor Scale. Ann Neurol. 2021 May;89(5):967–78. doi: 10.1002/ana.26044
  12. Mercuri E, Muntoni F. Muscular dystrophies. Lancet. 2013;9(381):845-60. doi: 10.1016/S0140-6736(12)61897-2
  13. Crudele JM, Chamberlain JS. AAV-based gene therapies for the muscular dystrophies. Hum Mol Genet. 2019 Oct 1;28(R1):R102–R107. doi: 10.1093/hmg/ddz128
  14. Niewiadomski W, Palasz E, Skupinska M, Zylinski M, Steczkowska M, Gasiorowska A, Niewiadomska G, Riedel G. TracMouse: A computer aided movement analysis script for the mouse inverted horizontal grid test. Sci Rep. 2016 Dec 16;6:39331. doi: 10.1038/srep39331
  15. Lysikova EA, Chaprov KD. Knock-out of α-, β-, and γ-synuclein genes in mice leads to changes in the distribution of several lipids in the liver and blood plasma. Research Results in Biomedicine. 2022;8(4):448–56. doi: 10.18413/2658-6533-2022-8-4-0-4. Russian
  16. Chaprov KD, Teterina EV, Roman AY, Ivanova TA, Lysikova EA, Lytkina OA, Koroleva IV, Ovchinnikov RK, Kukharsky MS, Goloborshcheva VV, Kucheryanu VG, Morozov SG, Popova NI, Antohin AI. Comparative analysis of MPTP neurotoxicity in mice with a constitutive knockout of the α-synuclein gene. Molecular Biology. 2021;55(1):133–42. doi: 10.31857/S0026898421010031. Russian
  17. Spurney CF, Gordish-Dressman H, Guerron AD, Sali A, Pandey GS, Rawat R, Van Der Meulen JH, Cha HJ, Pistilli EE, Partridge TA, Hoffman EP, Nagaraju K. Preclinical drug trials in the mdx mouse: assessment of reliable and sensitive outcome measures. Muscle Nerve. 2009 May;39(5):591–602. doi: 10.1002/mus.21211
  18. Reeves SL, Fleming KE, Zhang L, Scimemi A. M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice. PLoS Comput Biol. 2016 Sep 16;12(9):e1005115. doi: 10.1371/journal.pcbi.1005115
  19. Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, Danning C, Wada R, Thompson C, Bahtiyar G, Craft J, Hooft Van Huijsduijnen R, Plotz P. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9209–14. doi: 10.1073/pnas.97.16.9209
  20. García-Campos P, Báez-Matus X, Jara-Gutiérrez C, Paz-Araos M, Astorga C, Cea LA, Rodríguez V, Bevilacqua JA, Caviedes P, Cárdenas AM. N-Acetylcysteine Reduces Skeletal Muscles Oxidative Stress and Improves Grip Strength in Dysferlin-Deficient Bla/J Mice. Int J Mol Sci. 2020 Jun 16;21(12):4293. doi: 10.3390/ijms21124293
  21. Veniaminova E, Oplatchikova M, Bettendorff L, Kotenkova E, Lysko A, Vasilevskaya E, Kalueff AV, Fedulova L, Umriukhin A, Lesch KP, Anthony DC, Strekalova T. Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sci. 2020 Jan 15;241:117163. doi: 10.1016/j.lfs.2019.117163
  22. Spasov AA, Maltsev DV, Miroshnikov MV, Skripka MO, Sultanova KT, Zhukovskaya ON, Morkovnik AS. Anxiolytic activity of 11H-2,3,4,5-tetrahydro[1,3]diazepino[1,2-A]benzimidazole and 2-mercaptoben- zimizadole derivatives. Russian Journal of Bioorganic Chemistry. 2020;46(1):107–14. doi: 10.31857/S0132342320010145. Russian
  23. Polyakova LV, Zhukova ES, Irkaeva AM, Chugunova VV, Shcherbatyuk TG, Pozdnyakova MA, Umnyagina IA. The concept of using the test “forced swimming with a load” for experimental modeling of the labor process on laboratory animals. Abstracts of the Ninth Conference of Specialists in Laboratory Animals Rus-LASA, Laboratory animals for science. 2021; 4. doi: 10.29296/2618723X-RusLASA2021-06. Russian
  24. Zaytseva MS, Ivanov DG, Alexandrovskaya NV The rat work capacity in forced swimming test with load and causes it variability. Journal Biomed. 2015;1(4):30–42. (In Russian)
  25. Shustov EB, Novikov VS, Berzin IA, Kim AE, Bolotova VT. Functional sports nutrition for martial athletes: design and performance criteria. Journal Biomed. 2017;(1):10–23. Russian
  26. Chernova ON, Chekmareva IA, Mavlikeev MO, Yakovlev IA, Kiyasov AP, Deev RV. Structural and ultrastructural changes in the skeletal muscles of dysferlin-deficient mice during postnatal ontogenesis. Ultrastruct Pathol. 2022 Jul 4;46(4):359–67. doi: 10.1080/01913123.2022.2105464
  27. Chernova ON, Mavlikeev MO, Kiyasov AP, Bozo IY, Deev RV. Reactive Changes in Elements of Stromal-Vascular Differons of Dysferlin-Deficient Skeletal Muscles after Procaine Injection. Bull Exp Biol Med. 2021 Mar;170(5):677–81. doi: 10.1007/s10517-021-05131-5
  28. Chakravorty S, Nallamilli BRR, Khadilkar SV, Singla MB, Bhutada A, Dastur R, Gaitonde PS, Rufibach LE, Gloster L, Hegde M. Clinical and Genomic Evaluation of 207 Genetic Myopathies in the Indian Subcontinent. Front Neurol. 2020 Nov 5;11:559327. doi: 10.3389/fneur.2020.559327
  29. Khukharevaa DD, Gusevaa KD, Sukhanovaa IuA, Sebentsovab EA, Levitskaya NG. Physiological effects of acute neonatal normobaric hypoxia in C57BL/6 mice IP Pavlov Journal of Higher Nervous Activity. 2020;70(4): 515–27. doi: 10.31857/S0044467720040048
  30. Ho M, Post CM, Donahue LR, Lidov HG, Bronson RT, Goolsby H, Watkins SC, Cox GA, Brown RH Jr. Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet. 2004 Sep 15;13(18):1999-2010. doi: 10.1093/hmg/ddh212
  31. Hornsey MA, Laval SH, Barresi R, Lochmüller H, Bushby K. Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord. 2013 May;23(5):377-87. doi: 10.1016/j.nmd.2013.02.004
  32. Grounds MD, Terrill JR, Radley-Crabb HG, Robertson T, Papadimitriou J, Spuler S, Shavlakadze T. Lipid accumulation in dysferlin-deficient muscles. Am J Pathol. 2014 Jun;184(6):1668–76. doi: 10.1016/j.ajpath.2014.02.005
  33. Lloyd EM, Xu H, Murphy RM, Grounds MD, Pinniger GJ. Dysferlin-deficiency has greater impact on function of slow muscles, compared with fast, in aged BLAJ mice. PLoS One. 2019 Apr 10;14(4):e0214908. doi: 10.1371/journal.pone.0214908

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 2 – Detection of retrotransposon presence in Bla/J mice by PCR. Note: product size WT (wild type) is 204 bps; product size Bla/J 237 – bps; NTC – negative control without template.

Download (151KB)
3. Figure 3 – Physiological parameters of Bla/J mice. Note: the analysis of forelimbs grip strength in the “Grip strength test” (A and B), endurance in the “Weight-loaded swimming test” (C and D), physical performance in the “Wire Hanging test” (E and F) and the “Vertical Pole test” (G and H), coordination of movements and limbs muscle strength in the “Inverted Grid test” (K and L). Experimental Bla/J and control mice without a genome modification (WT) were tested at the age of 12 (A, C, E, G, K) and 24 weeks (B, D, F, H, L). Medians and a standard error of the mean are presented, the number of animals is indicated at the bottom of the corresponding column. Samples were tested for normality, and statistical significance was assessed using the Mann-Whitney U-test (**p <0.01; ***p <0.0004, ****p <0.0001).

Download (161KB)
4. Figure 4 – Immunofluorescent reaction with antibodies to dysferlin. Note: A – C57Bl mouse; B –line Bla/J mouse. Red color – detectable dysferlin of sarcoplasmic localization, blue color – nuclei. Finishing dyeing: DAPI. Magnification ×200

Download (88KB)
5. Figure 1 – Scheme of primers position for amplification of genomic area (wild type) and 3’LTR area of retrotransposon (mutant). Note: WT – wild type; DYSF-F – common forward primer; DYSF-R – common reverse primer; ETn-OR – forward primer homologous to 3’LTR area of retrotransposon; 5’LTR, 5’ – long terminal repeats; 3’LTR – 3’ – long terminal repeats.

Download (220KB)
6. Figure 5 – Striated skeletal muscle tissue of studied animals. Note: A – control, C57Bl; B–D – Bla / J. 1 – endomysial and perimysial edema; 2 – fibers with centrally located nuclei; 3 – lympho-macrophage infiltration around necrotic muscle fibers; 4 – necrotic muscle fibers, incl. macrophage invasion; 5 – rounded muscle fibers. Colour: eosin. Magnification: A–C ×200, D ×400

Download (491KB)
7. Figure 6 – Morphometric parameters of striated skeletal muscle tissue of Bla/J mice at 12 and 24 weeks of age. Note: A – proportion of necrotic muscle fibers; B – Average cross-sectional area of muscle fibers; C – proportion of central nuclear muscle fibers (CNMFs); D – proportion of connective tissue in skeletal muscle (*p < 0.05)

Download (95KB)

Copyright (c) 2023 Korokin M.V., Kuzubova E.V., Radchenko A.I., Deev R.V., Yakovlev I.A., Deikin A.V., Zhunusov N.S., Krayushkina A.M., Pokrovsky V.M., Puchenkova O.A., Chaprov K.D., Ekimova N.V., Bardakov S.N., Chernova O.N., Emelin A.M., Limaev I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies