Mechanisms of cytokine storm development in COVID-19 and new potential targets of pharmacotherapy

Cover Page

Cite item

Abstract

The development of a “cytokine storm”, characteristic of severe COVID-19 forms, can be defined as a state of uncontrolled release of a large number of inflammatory mediators.

The attachment of SARS-CoV-2 S-glycoprotein to angiotensin-converting enzyme 2 is considered a process that triggers complex molecular interactions that lead to hyperinflammation. In its turn, it is realized through several systems: renin-angiotensin-aldosterone, kallikrein-kinin and a complement system. Knowledge of these mechanisms suggests potential therapeutic interventions that can be targeted by existing therapeutic agents to counter the cytokine storm and treat the acute respiratory distress syndrome associated with COVID-19.

The aim of the review article is to summarize the currently known data on the molecular processes underlying the uncontrolled “cytokine storm” in the patients with severe COVID-19, and possible options for their pharmacological correction.

Materials and methods. The data base was represented by such systems as Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science Core Collection, Cochrane Library, ClinicalTrials.gov, Elibrary, Google-Academy. A search was carried out for the following keywords and combinations: COVID-19, renin-angiotensin-aldosterone system, bradykinin, complement system, hyaluronic acid, pharmacotherapy.

Results. The development of a “cytokine storm” in COVID-19 is mediated by pathogenetic changes in the body in response to the penetration of SARS-CoV-2 into the cell. In the RAAS, suppression of ACE2 leads to a decrease in its ability to degrade ATII, which, on the one hand, leads to a decrease in the amount of AT1-7, and, on the other hand, to the effect of ATII on AT1R with the subsequent development of vasoconstriction and lung damage. The disturbances in the kallikrein-kinin system are associated, on the one hand, with the increased expression of kallikrein and an increase in the formation of bradykinin and its metabolite des-Arg 9-bradykinin. On the other hand, the disturbances are associated with the suppression of the expression of the C1-esterase inhibitor which prevents the formation of kallikrein, and impaired inactivation of des-Arg 9-bradykinin under the action of ACE 2. The nucleocapsid protein SARS-CoV-2 triggers the activation of the complement system through the lectin pathway. It leads to the production of anaphylatoxins C3a and C5a, which stimulate the synthesis of pro-inflammatory cytokines. Proinflammatory cytokines are potent inducers of the HAS 2 gene in the endothelium, which encodes the membrane enzymes of hyaluronate synthase. The sweating of the fluid into the alveoli caused by the “bradykinin storm” in combination with the overproduction of hyaluronic acid, which accumulates water 1000 times its own mass, can lead to the formation of a dense jelly-like substance that prevents gas exchange.

Conclusion. Promising areas of pharmacotherapy for “cytokine storm” are associated with its impact on the dysfunction of the listed above systems. However, the efficacy and safety of most drugs for the treatment of COVID-19, is to be studied through carefully designed clinical trials.

About the authors

Vladimir I. Petrov

Volgograd State Medical University

Email: brain@sprintnet.ru
ORCID iD: 0000-0002-0258-4092

Doctor of Sciences (Medicine), Professor, Academician of Russian Academy of Sciences, the Head of the Department of Clinical Pharmacology and Intensive Care

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Alexander A. Amosov

Volgograd State Medical University

Email: aleksandr.amosov.1998@mail.ru
ORCID iD: 0000-0003-4539-7577

6th year student of the medical faculty

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Anastasia S. Gerasimenko

Volgograd State Medical University

Email: 16any_61@mail.ru
ORCID iD: 0000-0002-7957-3770

Assistant of Department of Clinical Pharmacology and Intensive Care

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Olga V. Shatalova

Volgograd State Medical University

Email: shov_med@mail.ru
ORCID iD: 0000-0002-7311-4549

Doctor of Sciences (Medicine), Professor of the Department of Clinical Pharmacology and Intensive Care

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Angelika V. Ponomareva

Volgograd State Medical University

Email: angelvr@yandex.ru
ORCID iD: 0000-0002-8237-8335

Doctor of Sciences (Medicine), Professor of the Department of Clinical Pharmacology and Intensive Care

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Alexander N. Akinchits

Volgograd State Medical University

Email: aakochetova@volgmed.ru
ORCID iD: 0000-0002-5428-3179

Doctor of Sciences (Medicine), Associate Professor, First Vice-Rector

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Iraida S. Kulakova

Volgograd State Medical University

Email: iraida97@mail.ru
ORCID iD: 0000-0002-2717-8218

6th year student of the medical faculty

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Vladislav S. Gorbatenko

Volgograd State Medical University

Author for correspondence.
Email: vlad30.03@mail.ru
ORCID iD: 0000-0002-6565-2566

Candidate of Sciences (Medicine), Associate Professor of the Department of Clinical Pharmacology and Intensive Care

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

References

  1. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–423. doi: 10.1002/jmv.25681.
  2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
  3. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012Mar;76(1):16–32. doi: 10.1128/MMBR.05015-11.
  4. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020 Apr 23;382(17):1653-1659.
  5. doi: 10.1056/NEJMsr2005760.
  6. Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, Mast AE, Justice A, Aronow B, Jacobson D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020 Jul 7;9:e59177. doi: 10.7554/eLife.59177.
  7. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflam. 2014;2014:689360. doi: 10.1155/2014/689360.
  8. Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol. 2011 Apr;300(4):R804–17. doi: 10.1152/ajpregu.00222.2010.
  9. Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol. 2013 Jan 18;216(2):R1–R17. doi: 10.1530/JOE-12-0341.
  10. Xu X, Cui L, Hou F, Liu X, Wang Y, Wen Y, Chi C, Li C, Liu R, Yin C. Angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis prevents pancreatic acinar cell inflammatory response via inhibition of the p38 mitogen-activated protein kinase/nuclear factor-κB pathway. Int J Mol Med. 2018 Jan;41(1):409–420. doi: 10.3892/ijmm.2017.3252.
  11. Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Silva AR, Caliari MV, Prata LO, Abreu SC, Rocco PR, Barcelos LS, Santos RA, Campagnole-Santos MJ. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br J Pharmacol. 2015 May;172(9):2330–42. doi: 10.1111/bph.13057.
  12. Chang CF, D’Souza WN, Ch’en IL, Pages G, Pouyssegur J, Hedrick SM. Polar opposites: Erk direction of CD4 T cell subsets. J Immunol. 2012 Jul 15;189(2):721–31. doi: 10.4049/jimmunol.1103015.
  13. Mosmann TR, Kobie JJ, Lee FE, Quataert SA. T helper cytokine patterns: defined subsets, random expression, and external modulation. Immunol Res. 2009 Dec;45(2–3):173–84. doi: 10.1007/s12026-009-8098-5.
  14. Guilliams M, Movahedi K, Bosschaerts T, VandenDriessche T, Chuah MK, Hérin M, Acosta-Sanchez A, Ma L, Moser M, Van Ginderachter JA, Brys L, De Baetselier P, Beschin A. IL-10 dampens TNF/inducible nitric oxide synthase-producing dendritic cell-mediated pathogenicity during parasitic infection. J Immunol. 2009 Jan 15;182(2):1107–18. doi: 10.4049/jimmunol.182.2.1107.
  15. Soto M., diZerega G., Rodgers K.E. Countermeasure and therapeutic: A(1–7) to treat acute respiratory distress syndrome due to COVID-19 infection. J Renin Angiotensin Aldosterone Syst. 2020 Oct-Dec;21(4):1470320320972018. doi: 10.1177/1470320320972018.
  16. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, Zhang Z, Wang L, Peng L, Chen L, Qin Y, Zhao D, Tan S, Yin L, Xu J, Zhou C, Jiang C, Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020 Mar;63(3):364–374. doi: 10.1007/s11427-020-1643-8.
  17. Pirola CJ, Sookoian S. Estimation of Renin-Angiotensin-Aldosterone-System (RAAS)-Inhibitor effect on COVID-19 outcome: A Meta-analysis. J Infect. 2020 Aug;81(2):276-281. doi: 10.1016/j.jinf.2020.05.052.
  18. Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020 Jul;92(7):726–730. doi: 10.1002/jmv.25785.
  19. Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB Jr, Chappell M, Hackam DJ, Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9-bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018 Jan 1;314(1):L17–L31. doi: 10.1152/ajplung.00498.2016.
  20. Erdös EG, Jackman HL, Brovkovych V, Tan F, Deddish PA. Products of angiotensin I hydrolysis by human cardiac enzymes potentiate bradykinin. J Mol Cell Cardiol. 2002 Dec;34(12):1569–76. doi: 10.1006/jmcc.2002.2080.
  21. Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010 Aug;47(13):2161–9. doi: 10.1016/j.molimm.2010.05.010.
  22. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. – 2020.03.29.20041962. doi: 10.1101/2020.03.29.20041962.
  23. Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol. 2018 Aug 8;9:1851. doi: 10.3389/fimmu.2018.01851.
  24. Schindler R, Gelfand JA, Dinarello CA. Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. Blood. 1990 Oct 15;76(8):1631–8.
  25. Viedt C, Hänsch GM, Brandes RP, Kübler W, Kreuzer J. The terminal complement complex C5b-9 stimulates interleukin-6 production in human smooth muscle cells through activation of transcription factors NF-kappa B and AP-1. FASEB J. 2000 Dec;14(15):2370–2. doi: 10.1096/fj.00-0468fje.
  26. Torzewski J, Oldroyd R, Lachmann P, Fitzsimmons C, Proudfoot D, Bowyer D. Complement-induced release of monocyte chemotactic protein-1 from human smooth muscle cells. A possible initiating event in atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. 1996 May;16(5):673–7. doi: 10.1161/01.atv.16.5.673.
  27. Laudisi F, Spreafico R, Evrard M, Hughes TR, Mandriani B, Kandasamy M, Morgan BP, Sivasankar B, Mortellaro A. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol. 2013 Aug 1;191(3):1006–10. doi: 10.4049/jimmunol.1300489.
  28. Rambaldi A, Gritti G, Micò MC, Frigeni M, Borleri G, Salvi A, Landi F, Pavoni C, Sonzogni A, Gianatti A, Binda F, Fagiuoli S, Di Marco F, Lorini L, Remuzzi G, Whitaker S, Demopulos G. Endothelial injury and thrombotic microangiopathy in COVID-19: Treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology. 2020 Nov;225(6):152001. doi: 10.1016/j.imbio.2020.152001.
  29. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT, Baric RS. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio. 2018 Oct 9;9(5):e01753–18. doi: 10.1128/mBio.01753-18.
  30. Kaneiwa T, Mizumoto S, Sugahara K, Yamada S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology. 2010 Mar;20(3):300–9. doi: 10.1093/glycob/cwp174.
  31. Harada H, Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and-2. Journal of Biological Chemistry. 2007;282(8):5597–5607.
  32. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X.
  33. Hällgren R, Samuelsson T, Laurent TC, Modig J. Accumulation of hyaluronan (hyaluronic acid) in the lung in adult respiratory distress syndrome. Am Rev Respir Dis. 1989 Mar;139(3):682–7. doi: 10.1164/ajrccm/139.3.682.
  34. Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol. 2019 Jul;80:14–28. doi: 10.1016/j.matbio.2018.06.006.
  35. Hellman U, Karlsson MG, Engström-Laurent A, Cajander S, Dorofte L, Ahlm C, Laurent C, Blomberg A. Presence of hyaluronan in lung alveoli in severe Covid-19: An opening for new treatment options? J Biol Chem. 2020 Nov 6;295(45):15418–15422. doi: 10.1074/jbc.AC120.015967.
  36. Safari S, Salimi A, Zali A, Jahangirifard A, Bastanhagh E, Aminnejad R, Dabbagh A, Lotfi AH, Saeidi M. Extracorporeal Hemoperfusion as a Potential Therapeutic Option for Severe COVID-19 patients; a Narrative Review. Arch Acad Emerg Med. 2020 Aug 22;8(1):e67.
  37. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013 Sep;52(9):783–92. doi: 10.1007/s40262-013-0072-7.
  38. Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, Hardes K, Powley WM, Wright TJ, Siederer SK, Fairman DA, Lipson DA, Bayliffe AI, Lazaar AL. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017 Sep 7;21(1):234. doi: 10.1186/s13054-017-1823-x.
  39. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell. 2020 May 14;181(4):905–913.e7. doi: 10.1016/j.cell.2020.04.004.
  40. Peiró C, Moncada S. Substituting Angiotensin-(1-7) to Prevent Lung Damage in SARS-CoV-2 Infection? Circulation. 2020 May 26;141(21):1665–1666. doi: 10.1161/CIRCULATIONAHA.120.047297.
  41. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020 Apr 2;12(4):988. doi: 10.3390/nu12040988.
  42. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002 Jul;110(2):229–38. doi: 10.1172/JCI15219.
  43. Maghbooli Z, Sahraian MA, Ebrahimi M, Pazoki M, Kafan S, Tabriz HM, Hadadi A, Montazeri M, Nasiri M, Shirvani A, Holick MF. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS One. 2020 Sep 25;15(9):e0239799. doi: 10.1371/journal.pone.0239799.
  44. Rejnmark L, Bislev LS, Cashman KD, Eiríksdottir G, Gaksch M, Grübler M, Grimnes G, Gudnason V, Lips P, Pilz S, van Schoor NM, Kiely M, Jorde R. Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLoS One. 2017 Jul 7;12(7):e0180512. doi: 10.1371/journal.pone.0180512.
  45. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, Goodall EC, Grant CC, Griffiths CJ, Janssens W, Laaksi I, Manaseki-Holland S, Mauger D, Murdoch DR, Neale R, Rees JR, Simpson S Jr, Stelmach I, Kumar GT, Urashima M, Camargo CA Jr. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017 Feb 15;356:i6583. doi: 10.1136/bmj.i6583.
  46. Bozó É, Éles J, Keserű GM. Bradykinin B1 receptor antagonists: a patent update 2009 – 2012. Expert Opin Ther Pat. 2012 Dec;22(12):1443–52. doi: 10.1517/13543776.2012.730521.
  47. Thomson TM, Toscano-Guerra E, Casis E, Paciucci R. C1 esterase inhibitor and the contact system in COVID-19. Br J Haematol. 2020 Aug;190(4):520-524. doi: 10.1111/bjh.16938.
  48. Urwyler P, Moser S, Charitos P, Heijnen IAFM, Rudin M, Sommer G, Giannetti BM, Bassetti S, Sendi P, Trendelenburg M, Osthoff M. Treatment of COVID-19 With Conestat Alfa, a Regulator of the Complement, Contact Activation and Kallikrein-Kinin System. Front Immunol. 2020 Aug 14;11:2072. doi: 10.3389/fimmu.2020.02072.
  49. van de Veerdonk FL, Kouijzer IJE, de Nooijer AH, van der Hoeven HG, Maas C, Netea MG, Brüggemann RJM. Outcomes Associated With Use of a Kinin B2 Receptor Antagonist Among Patients With COVID-19. JAMA Netw Open. 2020 Aug 3;3(8):e2017708. doi: 10.1001/jamanetworkopen.2020.17708.
  50. Diurno F, Numis FG, Porta G, Cirillo F, Maddaluno S, Ragozzino A, De Negri P, Di Gennaro C, Pagano A, Allegorico E, Bressy L, Bosso G, Ferrara A, Serra C, Montisci A, D’Amico M, Schiano Lo Morello S, Di Costanzo G, Tucci AG, Marchetti P, Di Vincenzo U, Sorrentino I, Casciotta A, Fusco M, Buonerba C, Berretta M, Ceccarelli M, Nunnari G, Diessa Y, Cicala S, Facchini G. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020 Apr;24(7):4040–4047. doi: 10.26355/eurrev_202004_20875.
  51. Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov. 2019 Sep;18(9):707–729. doi: 10.1038/s41573-019-0031-6.
  52. Mastellos DC, Pires da Silva BGP, Fonseca BAL, Fonseca NP, Auxiliadora-Martins M, Mastaglio S, Ruggeri A, Sironi M, Radermacher P, Chrysanthopoulou A, Skendros P, Ritis K, Manfra I, Iacobelli S, Huber-Lang M, Nilsson B, Yancopoulou D, Connolly ES, Garlanda C, Ciceri F, Risitano AM, Calado RT, Lambris JD. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol. 2020 Nov;220:108598. doi: 10.1016/j.clim.2020.108598.
  53. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb Thrombolysis. 2020 Oct 15:1–6. doi: 10.1007/s11239-020-02297-z.
  54. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020 May;27(5):1451–1454. doi: 10.1038/s41418-020-0530-3.
  55. Kultti A, Pasonen-Seppänen S, Jauhiainen M, Rilla KJ, Kärnä R, Pyöriä E, Tammi RH, Tammi MI. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res. 2009 Jul 1;315(11):1914–23. doi: 10.1016/j.yexcr.2009.03.002.
  56. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020 Nov;131:110698. doi: 10.1016/j.biopha.2020.110698.
  57. Kaye AG, Siegel R. The efficacy of IL-6 inhibitor Tocilizumab in reducing severe COVID-19 mortality: a systematic review. PeerJ. 2020 Nov 2;8:e10322. doi: 10.7717/peerj.10322.
  58. Rafiullah M, Siddiqui K. Corticosteroid use in viral pneumonia: experience so far and the dexamethasone breakthrough in coronavirus disease-2019. J Comp Eff Res. 2020 Dec;9(18):1247–1254. doi: 10.2217/cer-2020-0146.
  59. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8):693–704. doi: 10.1056/NEJMoa2021436.
  60. Maskin LP, Olarte GL, Palizas F Jr, Velo AE, Lurbet MF, Bonelli I, Baredes ND, Rodríguez PO. High dose dexamethasone treatment for Acute Respiratory Distress Syndrome secondary to COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020 Aug 26;21(1):743. doi: 10.1186/s13063-020-04646-y.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – RAAS is a system with two axes: the ACE/ATII/AT1R axis – pathological – and, opposite to it, the anti-inflammatory axis – ACE2/AT1-7/MasR. The penetration of SARS-CoV-2 into the cell and its subsequent suppression of ACE2, shifts the balance towards the pathological axis and, as a result, an increased total ratio of ATII to AT1-7 leads to a deterioration of lung function and lung damage

Download (173KB)
3. Figure 2 – Disturbances in the kallikrein-kinin system are associated, on the one hand, with increased expression of kallikrein and an increase in the formation of bradykinin and its metabolite des-Arg 9-bradykinin; on the other hand, with the suppression of the expression of the C1-esterase inhibitor, which prevents the formation of kallikrein, and violation of des-Arg 9-bradykinin inactivation by ACE2

Download (181KB)

Copyright (c) 2020 Petrov V.I., Amosov A.A., Gerasimenko A.S., Shatalova O.V., Ponomareva A.V., Akinchits A.N., Kulakova I.S., Gorbatenko V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies