EFFECTS OF VARIOUS AVERSIVE ENVIRONMENTS ON OXYGEN CONSUMPTION OF MUSCLE AND BLOOD IN MICE UNDER CONDITIONS OF THE “FORCED SWIMMING” TEST


Cite item

Full Text

Abstract

The aim of the study is to assess the effect of various aversive environments on the oxygen consumption in muscles and blood in mice Under conditions of the “forced swimming” test.Materials and methods. The study was performed on outbred male mice. Exhausting physical activity was modeled in the “forced swimming” test in various aversive environments. The oxygen consumption by the muscle tissue, as well as the oxygen capacity of the blood, were estimated using the respirometry method (AKPM1-01L (“Alfa Bassens”, Russia)).Results. In the course of the study it was found out that in the group of the animals swimming in hot water (at the temperature of 41°C) as an aversive environment, there was no significant change in the oxygen consumption by mitochondria of striated muscle and by red blood cells in comparison with the intact group of the animals. At the same time, in the group of the mice, where cold water (at the temperature of 15°C) as an aversive environment was used, a statistically significant (by the end of the experiment) decrease in the swimming time was observed in relation to the intact group of the animals. It was accompanied by a decrease in the oxygen consumption by muscle mitochondria, with a constant level of the blood oxygenation. Under conditions of exhausting physical exertion, in the group of the animals that received Metaprot®, an increase in working capacity was noted in both hot and cold water. After peak days of working capacity, a slight decrease in physical activity was observed in both experimental groups. At the same time, it should be noted that oxygenation of blood and muscle tissue against the background of exhausting physical exertion in the group that received Metaprot®, did not differ from the group of intact animals in various aversive environments.Conclusion. Thus, based on the obtained data, it can be assumed that under conditions of “forced swimming” with loading, the most profound changes in the structure and functions of the striated muscles are observed in animals in cold (15°С) water That is reflected in a decrease in the physical strain and in reducing the oxygen consumption by muscle tissue. The use of the drug Metaprot® promoted correcting the changes in the physical performance of the animals, which was reflected in its increase by 144.8% (p <0.05), compared with the initial swimming time of this group, without the oxygen consumption by erythrocytes and mitochondria of striated muscles.

About the authors

A. V. Voronkov

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: prohor77@mail.ru

A. D. Gerashchenko

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: anastasia_gerashchenko@mail.ru

D. I. Pozdnyakov

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

Email: pozdniackow.dmitry@yandex.ru

D. V. Khusainov

Pyatigorsk Medical and Pharmaceutical Institute - branch of Volgograd State Medical University

References

  1. Baron D.A., Martin D.M., Abol Magd S. Doping in sports and its spread to at-risk populations: an international review // World Psychiatry. - 2007. - Vol. 6. - P. 118-123.
  2. Купко Е.Н., Гусова Б.А., Молчанов М.В., Семухин А.Н. Анализ фармакологических подходов к повышению физической работоспособности спасателей в условиях чрезвычайных ситуаций // Фармация и фармакология. - 2014. - T. 2, № 6 (7). - С. 88-91.
  3. Савилов Е. Д. Техногенное загрязнение окружающей среды - новый фактор риска инфекционной патологии // Эпидемиология и инфекционные болезни. - 2011. - № 2 - С. 4-8.
  4. Яковлев А.А. Экологическое направление в эпидемиологии // Эпидемиология и инфекционные болезни. - 2011. - № 3 - С. 33-37.
  5. Кундашев У.К., Зурдинов А.З., Морозов И.С., Барчуков В.Г. Фармакологическая коррекция адаптивных реакций сердечно-сосудистой и центральной нервной систем у рабочих высокогорного рудника при вахтовом методе организации труда. Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. - 2013. - №4. - C. 76-81. Doi. org/10.25016/2541-7487-2013-0-4-76-81
  6. Ferraro E., Giammarioli A.M., Chiandotto S., Spoletini I., Rosano G. Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy // Antioxid Redox Signal. - 2014. - 21, №1. - Р. 154-176. doi: 10.1089/ars.2013.5773
  7. Murach K.A., White S.H., Wen Y., et al. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice // Skelet Muscle. - 2017. - Vol. 7, №1. - P. 14. doi: 10.1186/s13395-017-0132-z
  8. Воронков А.В., Поздняков Д.И., Воронкова М.П. Комплексная валидационная оценка нового методического подхода к изучению физического и психоэмоционального перенапряжения в эксперименте //Фундаментальные исследования. - 2015. - № 1-5. - C. 915-919.
  9. Abdelhamid R. E., Kovács K. J., Nunez M. G., Larson A. A. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors // Pharmacol Res. - 2013. - Vol. 79. - P. 21-27. doi: 10.1016/j.phrs.2013.10.006
  10. Воронков А.В., Ефремова М.П., Геращенко А.Д., Воронкова М.П. Влияние новых перспективных актопротекторов на развитие когнитивного дефицита у крыс на фоне истощающих физических нагрузок // Вестник Волгоградского государственного медицинского университета. - 2018. - №. 2 (66). - С. 107-111.
  11. Patel S.P., Sullivan P.G., Pandya J.D., et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma // Exp Neurol. -2014. - Vol. 257. - P. 95-105. doi: 10.1016/j.expneurol.2014.04.026.
  12. Ohno Y., Goto K.,Yamada S., et al. Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice // Molecular and cellular biochemistry. - 2012. - Vol. 369. - P. 45-53. doi: 10.1007/s11010-012-1367-y
  13. Stults-Kolehmainen M. A., Sinha R. The effects of stress on physical activity and exercise // Sports Med. - 2014. - Vol. 44, №1. - P. 81-121. doi: 10.1007/s40279-013-0090-5
  14. Koolhaas J. M., Bartolomucci A., Buwalda B., et al. Stress revisited: a critical evaluation of the stress concept // Neurosci Biobehav Rev. - 2011. - Vol. 35, №5. - P. 1291-1301.
  15. Zhang S., Wei Z., Liu W., et al. Indicators for Environment Health Risk Assessment in the Jiangsu Province of China // Int J Environ Res Public Health. - 2015. - Vol. 12, № 9. - P. 11012-11024. doi: 10.3390/ijerph120911012
  16. Kjøbsted R., Hingst J. R., Fentz J., et al. AMPK in skeletal muscle function and metabolism // FASEB J. - 2018. - Vol. 32, №4. - P. 1741-1777. doi: 10.1096/fj.201700442R
  17. Ohira T., Higashibata A., Seki M., et al. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats // Physiol Rep. - 2017. - Vol. 5, №15. - P. e13350. doi: 10.14814/phy2.13350
  18. Wei M., Gibbons L.W., Kampert J. B., et al. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes // Ann Intern Med. - 2000. - Vol. 132, №8. - P. 605- 611.
  19. Locke M., Celotti C. The effect of heat stress on skeletal muscle contractile properties // Cell Stress Chaperones. - 2013. - Vol. 19, №4. - P. 519-527. doi: 10.1007/s12192-013-0478-z
  20. Bal N.C., Singh S., Reis F.C.G., et al. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice // J Biol Chem. - 2017. - Vol. 292, №40. - P. 16616-16625. doi: 10.1074/jbc.M117.790451
  21. Gorski T., Mathes S., Krützfeldt J. Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control // J Cachexia Sarcopenia Muscle.-2018.- Vol. 9, №2. - Р. 384-399. doi: 10.1002/jcsm.12277
  22. Chung N., Park J., Lim K. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue // J Exerc Nutrition Biochem. - 2017. - Vol. 21, №2. - P. 39-47. doi: 10.20463/jenb.2017.0020
  23. Wakabayashi H., Nishimura T., Wijayanto T., et al. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans //International journal of biometeorology. - 2017. - Vol. 61. - № 7. - P. 1261-1267. doi: 10.1007/s00484-016-1303-z
  24. Reynolds T. H., Brozinick J.T., Larkin L.M., et al. Transient enhancement of GLUT-4 levels in rat epitrochlearis muscle after exercise training // J Appl Physiol (1985). - 2000. - Vol. 88, №6. - P. 2240-2245. doi: 10.1152/jappl.2000.88.6.2240
  25. Kang C., Li Ji L. Role of PGC-1α signaling in skeletal muscle health and disease // Ann N Y Acad Sci. - 2012. - Vol. 1271, №1. - P. 110-117. doi: 10.1111/j.1749-6632.2012.06738.x
  26. Воробьева В.В., Зарубина И.В., Шабанов П.Д. Защитные эффекты метапрота и этомерзола в экспериментальных моделях отравлений бытовыми ядами // Обзоры по клинической фармакологии и лекарственной терапии. - 2012. - Т. 10. - №. 1. - C. 3-21.
  27. Свиряева И.В., Мерцалова А.С., Рууге Э.К. Образование супероксидных радикалов в изолированных митохондриях сердца при малой концентрации кислорода // Биофизика. - 2010. - Т. 55, № 2. - С. 271-276.

Copyright (c) 2019 Voronkov A.V., Gerashchenko A.D., Pozdnyakov D.I., Khusainov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies