Pharmacotherapy possibilities of cardiovascular autonomous neuropathy in children with type 1 diabetes mellitus at the preclinical stage

Cover Page

Cite item

Abstract

The aim of the article is to evaluate the effectiveness of the thioctic acid preparation in the complex therapy of type 1 diabetes mellitus (T1DM) in children with cardiovascular autonomic neuropathy at the preclinical stage.

Materials and methods. A design is a prospective randomized study. A clinical and instrumental examination of 64 children with preclinical stage signs of diabetic cardiovascular autonomic neuropathy (DCAN) was carried out. The cohort was divided into 2 groups: in the main and control groups, glycemic control was normalized by adjusting a dose of insulin therapy; in the main group, the children additionally received thioctic acid at the dose of 600 mg/day for 3 months. To control the effectiveness of the therapy, the technique of laser Doppler flowmetry was used.

Results. After the pharmacological intervention, there was an improvement in the disease course, normalization of carbohydrate and lipid metabolism, increased vasomotor mechanisms of the regulation of the tissue blood flow due to an increase in endothelial and neurogenic kinds of activity in combination with a decrease in the intravascular tone and an increase in the effective perfusion in tissues. An increase in the heart rate variability was detected, positive dynamics of cardiovascular tests indicators according to D. Ewing, temporal (pNN50%, SDNN) and spectral indicators (VLF) were diagnosed. Achievement and maintenance of the target values of glycemic control indicators, as well as the absence of glycemic variability, turned out to be clinically significant for reducing the manifestations of neuropathy. The non-invasive technique of laser Doppler flowmetry is informative for the early diagnosis of DCAN in T1DM children.

Conclusion. The carried out studies have demonstrated the effectiveness of the lipoic acid use at the dose of 600 mg/day for 3 months in the children with DCAN signs at the preclinical stage. The method of laser Doppler flowmetry for determining indications and monitoring the effectiveness of therapy makes it possible to implement a personalized approach to prescribing preventive treatment in T1DM children.

Abbreviations: GCP – good clinical practice; HbA1c – glicated hemoglobin; LADA – Latent Autoimmune Diabetes of Adults; MODY – maturity onset diabetes in youth; pNN50% – the mean number of times an hour in which the change in successive normal sinus (NN) intervals exceeds 50 ms; SDNN – standard deviation normal to normal; VLF – very low frequencies; АVА – arteriolo-venular anastomoses; ALA – Alphalipoic acid/α-lipoic acid; DCAN – diabetic cardiovascular autonomic neuropathy; VVR – vegetative-vascular regulation; ESPALIPON II – an octanoic acid bridged with two sulfurs; NATHAN I – Neurological Assessment of Thioctic Acid in Diabetic Neuropathy; LDF – Laser Doppler Flowmetry; HDLP- High-Density Lipoprotein; LDLP – Low-Density Lipoprotein; HR – heart rate; T1DM – type 1 diabetes mellitus; TG – triglycerids; ECG – electrocardiography; BMI – body mass index.

About the authors

Natalya V. Malyuzhinskaya

Volgograd State Medical University

Email: maluzginskaia@yandex.ru
ORCID iD: 0000-0003-4624-8813

Doctor of Sciences (Medicine), Professor, Head of the Department of Children’s Diseases, Pediatric Faculty

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Ivan N. Shishimorov

Volgograd State Medical University

Email: drshishimorov@gmail.com
ORCID iD: 0000-0001-6098-7028

Doctor of Sciences (Medicine), Associate Professor, Head of the Department of Pediatrics and Neonatology

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Olga V. Magnitskaya

Volgograd State Medical University

Email: magol73@yandex.ru
ORCID iD: 0000-0001-6670-9029

Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Pediatrics and Neonatology, the Institute of Continuing Medical and Pharmaceutical Education

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Ksenia V. Stepanenko

Volgograd State Medical University

Email: kozhevnikova.kv@yandex.ru
ORCID iD: 0000-0001-8167-0003

Assistant of the Department of Children’s Diseases of the Pediatric Faculty

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Olga V. Polyakova

Volgograd State Medical University

Email: olvlpolyakova@gmail.com
ORCID iD: 0000-0001-6006-8136

Candidate of Sciences (Medicine), Associate Professor, Associate Professor of the Department of Children’s Diseases of the Pediatric Faculty

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Grigory V. Klitochenko

Volgograd State Medical University

Email: klitoch@mail.ru
ORCID iD: 0000-0001-9341-2298

Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Children’s Diseases of the Pediatric Faculty

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Irina V. Petrova

Volgograd State Medical University

Email: irina-petrova_09@mail.ru
ORCID iD: 0000-0003-0091-4980

Candidate of Sciences (Medicine), Associate Professor, Associate Professor of the Department of Children’s Diseases, Faculty of Pediatrics

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

Svetlana A. Emelyanova

Volgograd Regional Children’s Clinical Hospital

Email: vodkb@volganet.ru
ORCID iD: 0000-0001-5049-4078

Candidate of Sciences (Medicine), Associate Professor

Russian Federation, 76, Zemlyachki St., Volgograd, 400076

Anna P. Skiba

Volgograd State Medical University

Author for correspondence.
Email: anna-patashova@rambler.ru
ORCID iD: 0000-0002-4901-3043

post-graduate student of the Department of Children’s Diseases, Faculty of Pediatrics

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, 400131

References

  1. Ekusheva EV. Klinicheskie maski diabeticheskoj nejropatii [Clinical masks of diabetic neuropathy]. Effective pharmacotherapy. 2020; 16(17):34–9. doi: 10.33978/2307-3586-2020-16-17-34-39. Russian
  2. Tönnies T, Stahl-Pehe A, Baechle C, Castillo K, Kuss O, Yossa R, Lena MEL, Reinhard WH, Rosenbauer J. Risk of Microvascular Complications and Macrovascular Risk Factors in Early-Onset Type 1 Diabetes after at Least 10 Years Duration: An Analysis of Three Population-Based Cross-Sectional Surveys in Germany between 2009 and 2016. International Journal of Endocrinology. 2018; 2018: 7806980. doi: 10.1155/2018/7806980.
  3. Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron. 2017 Mar 22; 93(6):1296–313. doi: 10.1016/j.neuron.2017.02.005.
  4. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, Low P, Valensi P; Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011 Oct; 27(7):639–53. doi: 10.1002/dmrr.1239.
  5. Strokov IA, Zilov AV, Albekova ZhS, Fokina AA. Diabeticheskaya avtonomnaya kardiovaskulyarnaya nevropatiya [Diabetic autonomic cardiovascular neuropathy]. RMJ. 2011; 30:1874–7. Russian
  6. Soluyanova TN. Patogeneticheskii podkhod k lecheniyu avtonomnoi diabeticheskoi nevropatii: mesto preparatov al’fa-lipoevoi kisloty [Pathogenetic approach to the treatment of autonomic diabetic neuropathy: the place of alpha-lipoic acid preparations]. Endocrinology: news, opinions, training. 2019;(1):36–43. doi: 10.24411/2304-9529-2019-14005. Russian
  7. Nesterova MV, Galkin VV. Effectiveness of thioctic acid drugs (Espa-lipon) in the treatment of diabetic polyneuropathy. Meditsinskiy sovet = Medical Council. 2015; 5:94–9. doi: 10.21518/2079-701X-2015-5-94-99. Russian
  8. Bakulin IS, Zakharova MN. Lipoevaya kislota v patogeneticheskoj terapii diabeticheskoj polinevropatii: obzor eksperimental’nyh i klinicheskih issledovanij [Lipoic acid in the pathogenetic therapy of diabetic polyneuropathy: a review of experimental and clinical studies]. Nervous diseases. 2017;2:3–9. Russian
  9. Soluyanova TN. Al’fa-lipoevaya kislota v lechenii diabeticheskoj polinejropatii s pozicij dokazatel’noj mediciny [Alpha-lipoic acid in the treatment of diabetic polyneuropathy from the standpoint of evidence-based medicine]. Endocrinology: news, opinions, training. 2018;7(4):48–53. doi: 10.24411/2304-9529-2018-14006. Russian
  10. Agashe S, Petak S. Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist Debakey Cardiovasc J. 2018 Oct-Dec; 14(4):251-6. doi: 10.14797/mdcj-14-4-251.
  11. Khalimov YuSh, Salukhov VV. Tioktovaya kislota: ot kletochnyh mekhanizmov regulyacii k klinicheskoj praktike [Thioctic acid: from cellular mechanisms of regulation to clinical practice]. Effective pharmacotherapy. 2012; 46: 22–9. Russian
  12. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993 Sep 30; 329(14):977–86. doi: 10.1056/NEJM199309303291401.
  13. Akbari M, Ostadmohammadi V, Lankarani KB, Tabrizi R, Kolahdooz F, Khatibi SR, Asemi Z. The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Metabolism. 2018 Oct; 87:56–69. doi: 10.1016/j.metabol.2018.07.002.
  14. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004 Feb;21(2):114–21. doi: 10.1111/j.1464-5491.2004.01109.x.
  15. Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol. 2017 Dec 12; 8:849. doi: 10.3389/fphar.2017.00849.
  16. Gianturco V, Bellomo A, D’Ottavio E, Formosa V, Iori A, Mancinella M, Troisi G, Marigliano V. Impact of therapy with alpha-lipoic acid (ALA) on the oxidative stress in the controlled NIDDM: a possible preventive way against the organ dysfunction? Arch Gerontol Geriatr. 2009; 49 Suppl 1:129–33. doi: 10.1016/j.archger.2009.09.022.
  17. Ansar H, Mazloom Z, Kazemi F, Hejazi N. Effect of alpha-lipoic acid on blood glucose, insulin resistance and glutathione peroxidase of type 2 diabetic patients. Saudi Med J. 2011 Jun; 32(6):584–8.
  18. Zhang J, Zhou X, Wu W, Wang J, Xie H, Wu Z. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity. Environ Toxicol Pharmacol. 2017 Apr; 51:30–37. doi: 10.1016/j.etap.2017.02.022.
  19. Fratantonio D, Speciale A, Molonia MS, Bashllari R, Palumbo M, Saija A, Cimino F, Monastra G, Virgili F. Alpha-lipoic acid, but not di-hydrolipoic acid, activates Nrf2 response in primary human umbilical-vein endothelial cells and protects against TNF-α induced endothelium dysfunction. Arch Biochem Biophys. 2018 Oct 1; 655:18–25. doi: 10.1016/j.abb.2018.08.003.
  20. Tutelyan VA, Makhova AA, Pogozheva AV, Shikh EV, Elizarova EV, Khotimchenko SA. [Lipoic acid: physiological role and prospects for clinical application]. Vopr Pitan. 2019; 88(4): 6–11. doi: 10.24411/0042-8833-2019-10035. Russian
  21. Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997 Mar; 20(3):369–73. doi: 10.2337/diacare.20.3.369.
  22. Vasheghani M, Sarvghadi F, Beyranvand MR, Emami H. The relationship between QT interval indices with cardiac autonomic neuropathy in diabetic patients: a case control study. Diabetol Metab Syndr. 2020 Nov 19; 12(1):102. doi: 10.1186/s13098-020-00609-0.
  23. Duque A, Mediano MFF, De Lorenzo A, Rodrigues LF Jr. Cardiovascular autonomic neuropathy in diabetes: Pathophysiology, clinical assessment and implications. World J Diabetes. 2021 Jun 15; 12(6):855–867. doi: 10.4239/wjd.v12.i6.855.
  24. Kulikov DA, Glazkov AA, Kovaleva YuA, Balashova NV, Kulikov AV. Prospects of Laser Doppler flowmetry application in assessment of skin microcirculation in diabetes. Diabetes mellitus. 2017; 20(4):279–285. doi: 10.14341/DM8014. Russian
  25. Malyuzhinskaya NV, Stepanenko KV, Volchansky EI. Assessment of the functional state of the microvasculature in children with diabetes mellitus type 1. Medical Herald of the South of Russia. 2020; 11(2):71–80. doi: 10.21886/2219-8075-2020-11-2-71-80. Russian
  26. Malyuzhinskaya N.V., Kozhevnikova K.V., Polyakova O.V., Zhidkikh A.N. Analiz amplitudno-chastotnogo spektra kolebanij krovotoka u detej s saharnym diabetom 1 tipa [Analysis of the amplitude-frequency spectrum of blood flow oscillations in children with type 1 diabetes mellitus]. Bull Volgograd State Med Univer. 2016; 59(3):58–61. Russian
  27. Stepanenko KV, Malyuzhinskaya NV, Fedko NA, Klitochenko GV, Volchansky EI, Dzhanibekova AS, Polyakova OV, Petrova IV. Narusheniya lipidnogo obmena i kardiovaskulyarnaya patologiya u detej s saharnym diabetom 1 tipa [Lipid metabolism disorders and cardiovascular pathology in children with type 1 diabetes mellitus]. Med Bull North Caucasus. 2020; 15(4):488–91. doi: 10.14300/mnnc.2020.15114. Russian
  28. Khramilin VN, Andreeva VA. Effektivnost’ a-lipoevoj kisloty pri diabeticheskoj polinejropatii [Efficacy of a-lipoic acid in diabetic polyneuropathy]. Consilium Medicum. 2015; 17(9):144–8. Russian
  29. Jacob S, Rett K, Henriksen EJ, Häring HU. Thioctic acid-effects on insulin sensitivity and glucose-metabolism. Biofactors. 1999; 10(2–3):169–74. doi: 10.1002/biof.5520100212.
  30. Porasuphatana S, Suddee S, Nartnampong A, Konsil J, Harnwong B, Santaweesuk A. Glycemic and oxidative status of patients with type 2 diabetes mellitus following oral administration of alpha-lipoic acid: a randomized double-blinded placebo-controlled study. Asia Pac J Clin Nutr. 2012; 21(1):12–21.
  31. Ziegler D, Low PA, Freeman R, Tritschler H, Vinik AI. Predictors of improvement and progression of diabetic polyneuropathy following treatment with α-lipoic acid for 4 years in the NATHAN 1 trial. J Diabetes Complications. 2016 Mar; 30(2):350–6. doi: 10.1016/j.jdiacomp.2015.10.018.
  32. Wollin SD, Wang Y, Kubow S, Jones PJ. Effects of a medium chain triglyceride oil mixture and alpha-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels in the Golden Syrian hamster. J Nutr Biochem. 2004 Jul; 15(7):402–10. doi: 10.1016/j.jnutbio.2003.12.001.
  33. Zhang Y, Han P, Wu N, He B, Lu Y, Li S, Liu Y, Zhao S, Liu L, Li Y. Amelioration of lipid abnormalities by α-lipoic acid through antioxidative and anti-inflammatory effects. Obesity (Silver Spring). 2011 Aug; 19(8):1647–53. doi: 10.1038/oby.2011.121.
  34. Malyuzhinskaya NV, Kozhevnikova KV, Polyakova OV. Faktory, vliyayushchie na prodolzhitel’nost’ intervala QT u detej s saharnym diabetom tipa 1 i vozmozhnost’ prognozirovaniya ego udlineniya [Factors affecting the duration of the QT interval in children with type 1 diabetes mellitus and the possibility of predicting its lengthening]. Bull Volgograd State Med Univers. 2016; 58(2):132–5. Russian
  35. Nyiraty S, Pesei F, Orosz A, Coluzzi S, Vági OE, Lengyel C, Ábrahám G, Frontoni S, Kempler P, Várkonyi T. Cardiovascular Autonomic Neuropathy and Glucose Variability in Patients With Type 1 Diabetes: Is There an Association? Front Endocrinol (Lausanne). 2018 Apr 19; 9:174. doi: 10.3389/fendo.2018.00174.

Copyright (c) 2022 Malyuzhinskaya N.V., Shishimorov I.N., Magnitskaya O.V., Stepanenko K.V., Polyakova O.V., Klitochenko G.V., Petrova I.V., Emelyanova S.A., Skiba A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies