Influence of certain d-metals on formation of advanced glycation end products, aggregation and amyloid transformation of albumin in glycation reaction

Cover Page

Cite item

Abstract

The aim of the research is to investigate the influence of the factor of the glycation behavior of bovine serum albumin (BSA) by glucose, and the factor of d-metal cations (nickel (II), cobalt (II), iron (II), iron (III), copper (II) or zinc (II)) presence, on the process of aggregation and the amyloid transformation of BSA and, therefore, to establish the effect of these cations on the rate of the formation of advanced glycation end products (AGEs), and the intensity of fluorescence of the amino acids tyrosine and tryptophan.

Materials and methods. Reagents in the glycation are: glucose (at the final concentration of 0.36 M), BSA (at the final concentration of 1 mg/ml), deionized water, one of the d-metal cations, i. e. nickel (II), cobalt (II), iron (II), iron (III), copper (II) or zinc (II) (in the form of chloride, sulfate or nitrate salts, at the final concentration of 40 μM). The conditions for the glycation reaction are the incubation for 24 hours at the temperature of 60°C. The influence of two factors (the factor of the glycation reaction and the factor of a d-metal ion presence in the reaction medium) on the concentration of glycation end products (AGEs) formed during the glycation reaction, on the fluorescence intensity of the amino acids tryptophan and tyrosine, on the aggregation of BSA, and on the ability of BSA to the amyloid transformation under the described conditions, have been studied.

Results. It was found out that the studied factors have a statistically significant effect on the considered parameters. The highest activity was found for the copper ion (II), which intensifies the formation of the AGEs in the samples where glycation occurs, reduces the fluorescence intensity of the amino acids’ tryptophan and tyrosine (independently and increasing the effect against the background of glycation). Besides, it independently causes the aggregation of BSA hereby intensifying the effect against the background of glycation, it independently causes the amyloid transformation of BSA enhancing the effect against the background of glycation. The above-listed effects were the least pronounced in the reaction media with the addition of nickel (II) or cobalt (II). These cations reduce the rate of the AGEs formation, do not cause the formation of protein aggregates. In the presence of glucose, nickel (II) weakly suppresses the fluorescence intensity of tryptophan and tyrosine, and slightly enhances the amyloid transformation of BSA. Cobalt (II) slightly inhibits the amyloid transformation of BSA. In terms of the severity and nature of the effects, the iron (II), iron (III) and zinc (II) cations occupy an intermediate position between copper (II), on the one hand, and nickel (II) and cobalt (II), on the other hand, combining the influence on the AGEs formation, the intensity of fluorescence of tryptophan and tyrosine, the aggregation and amyloid transformation of BSA. In the absence of glucose, the ability of zinc (II) to induce the formation of protein aggregates turned out to be the highest, and its ability to stimulate the amyloid transformation of BSA corresponded to that of copper (II).

Conclusion. The presence of d-metal cations affects the rate of the AGEs formation in the glycation reaction, affects the rate of the BSA amyloid transformation and the protein aggregates formation. Among such ions as nickel (II), cobalt (II), iron (II), iron (III), copper (II) and zinc (II), copper (II) ions turned out to be the most active in their ability to accelerate the AGEs formation, suppress the fluorescence of tryptophan and tyrosine, enhance the aggregation and amyloid transformation of BSA in the glycation reaction. The least manifestation of these properties is observed for nickel (II) and cobalt (II) ions.

About the authors

Roman A. Litvinov

Volgograd State Medical University ; Volgograd Medical Research Center

Author for correspondence.
Email: litvinov.volggmu@mail.ru
ORCID iD: 0000-0002-0162-0653

Candidate of Sciences (Medicine), Senior Researcher, Laboratory of Metabotropic Medicines, Department of Pharmacology and Bioinformatics, Scientific Center for Innovative Medicines with Pilot Production; Researcher, Laboratory of Experimental Pharmacology

Russian Federation, Pavshikh Bortsov Sq., Volgograd, Russia, 400131; Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Arina V. Gontareva

Volgograd State Medical University

Email: arinaarinag@gmail.com

6th year student, specialty “Medical Biochemistry”; co-executor of the grant of the President of the Russian Federation to support young scientists, candidates of sciences 

Russian Federation, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Lyudmila E. Usmiyanova

Volgograd State Medical University

Email: mila.getmanets@gmail.com

6th year student, specialty “Medical Biochemistry”;co-executor of the grant of the President of the Russian Federation to support young scientists, candidates of sciences

Russian Federation, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Daria R. Klimenko

Volgograd State Medical University

Email: vip.klimenko.darya@mail.ru

4th year student, specialty “Pharmacy”

Russian Federation, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

References

  1. Perrone A, Giovino A, Benny J, Martinelli F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev. 2020 Mar 18;2020:3818196. doi: 10.1155/2020/3818196.
  2. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018 Sep 4;28(3):337–52. doi: 10.1016/j.cmet.2018.08.014.
  3. Yu L, Chen Y, Xu Y, He T, Wei Y, He R. D-ribose is elevated in T1DM patients and can be involved in the onset of encephalopathy. Aging (Albany NY). 2019 Jul 15;11(14):4943–69. doi: 10.18632/aging.102089.
  4. Akhter F, Chen D, Akhter A, Sosunov AA, Chen A, McKhann GM, Yan SF, Yan SS. High Dietary Advanced Glycation End Products Impair Mitochondrial and Cognitive Function. J Alzheimers Dis. 2020;76(1):165–78. doi: 10.3233/JAD-191236.
  5. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA. 1994 May 24;91(11):4766–70. doi: 10.1073/pnas.91.11.4766.
  6. König A, Vicente Miranda H, Outeiro TF. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson’s Disease. J Parkinsons Dis. 2018;8(1):33–43. doi: 10.3233/JPD-171285.
  7. Gan WJ, Gao CL, Zhang WQ, Gu JL, Zhao TT, Guo HL, Zhou H, Xu Y, Yu LL, Li LF, Gui DK, Xu YH. Kuwanon G protects HT22 cells from advanced glycation end product-induced damage. Exp Ther Med. 2021 May;21(5):425. doi: 10.3892/etm.2021.9869.
  8. Kong Y, Wang F, Wang J, Liu C, Zhou Y, Xu Z, Zhang C, Sun B, Guan Y. Pathological Mechanisms Linking Diabetes Mellitus and Alzheimer’s Disease: the Receptor for Advanced Glycation End Products (RAGE). Front Aging Neurosci. 2020 Jul 22;12:217. doi: 10.3389/fnagi.2020.00217.
  9. Yan SS, Chen D, Yan S, Guo L, Du H, Chen JX. RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer’s disease. Front Biosci (Schol Ed). 2012 Jan 1;4:240-50. doi: 10.2741/265.
  10. Kim, DK., Song, JW., Park, JD. Choi BS. Copper induces the accumulation of amyloid-beta in the brain. Mol. Cell. Toxicol. 2013;9:57–66. doi: 10.1007/s13273-013-0009-0.
  11. Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA, Nitti M. RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. Oxid Med Cell Longev. 2016;2016:9348651. doi: 10.1155/2016/9348651.
  12. Li XH, Du LL, Cheng XS, Jiang X, Zhang Y, Lv BL, Liu R, Wang JZ, Zhou XW. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 2013 Jun 13;4(6):e673. doi: 10.1038/cddis.2013.180.
  13. Iannuzzi C, Irace G, Sirangelo I. Role of glycation in amyloid: Effect on the aggregation process and cytotoxicity. IntechOpen 2016:165. doi: 10.5772/62995.
  14. Sirangelo I, Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. International Journal of Molecular Sciences. 2021; 22(12):6609. doi: 10.3390/ijms22126609.
  15. Milordini G, Zacco E, Percival M, Puglisi R, Dal Piaz F, Temussi P, Pastore A. The Role of Glycation on the Aggregation Properties of IAPP. Front Mol Biosci. 2020 Jun 3;7:104. doi: 10.3389/fmolb.2020.00104.
  16. Emendato A, Milordini G, Zacco E, Sicorello A, Dal Piaz F, Guerrini R, Thorogate R, Picone D, Pastore A. Glycation affects fibril formation of Aβ peptides. J Biol Chem. 2018 Aug 24;293(34):13100–11. doi: 10.1074/jbc.RA118.002275.
  17. Bhuiyan MN, Mitsuhashi S, Sigetomi K, Ubukata M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci Biotechnol Biochem. 2017 May;81(5):882–90. doi: 10.1080/09168451.2017.1282805.
  18. Wu Q, Li SY, Yang T, Xiao J, Chua QM, Li T, Xie BJ, Sun ZD. Inhibitory effect of lotus seedpod oligomeric procyanidins on advanced glycation end product formation in a lactose-lysine model system. Electronic Journal of Biotechnology. 2015;18(2):68–76. doi: 10.1016/j.ejbt.2014.10.005.
  19. Clayton PT. Inherited disorders of transition metal metabolism: an update. J Inherit Metab Dis. 2017 Jul;40(4):519–29. doi: 10.1007/s10545-017-0030-x.
  20. Serban AI, Condac E, Costache M, Dinischiotu A. The relationship between ages, Cu2+ and crosslinking of collagen. Revue Roumaine de Chimie. 2009;54 (1):93–101.
  21. Bavkar LN, Patil RS, Rooge SB, Nalawade ML, Arvindekar AU. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor. Mol Cell Biochem. 2019 Sep;459(1-2):61–71. doi: 10.1007/s11010-019-03550-7.
  22. Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci. 2018 Aug 19;19(8):2449. doi: 10.3390/ijms19082449.
  23. Xu Y, Xiao G, Liu L, Lang M. Zinc transporters in Alzheimer’s disease. Mol Brain. 2019 Dec 9;12(1):106. doi: 10.1186/s13041-019-0528-2.
  24. Benoit SL, Maier RJ. The nickel-chelator dimethylglyoxime inhibits human amyloid beta peptide in vitro aggregation. Sci Rep. 2021 Mar 23;11(1):6622. doi: 10.1038/s41598-021-86060-1.
  25. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998 Jun 11;158(1):47–52. doi: 10.1016/s0022-510x(98)00092-6.
  26. de la Arada I, Seiler C, Mäntele W. Amyloid fibril formation from human and bovine serum albumin followed by quasi-simultaneous Fourier-transform infrared (FT-IR) spectroscopy and static light scattering (SLS). Eur Biophys J. 2012 Nov;41(11):931–8. doi: 10.1007/s00249-012-0845-1.
  27. Holm NK, Jespersen SK, Thomassen LV, Wolff TY, Sehgal P, Thomsen LA, Christiansen G, Andersen CB, Knudsen AD, Otzen DE. Aggregation and fibrillation of bovine serum albumin. Biochim Biophys Acta. 2007 Sep;1774(9):1128-38. doi: 10.1016/j.bbapap.2007.06.008.
  28. Ma XJ, Zhang YJ, Zeng CM. Inhibition of Amyloid Aggregation of Bovine Serum Albumin by Sodium Dodecyl Sulfate at Submicellar Concentrations. Biochemistry (Mosc). 2018 Jan;83(1):60–68. doi: 10.1134/S000629791801008X.
  29. Litvinov RA, Kosolapov VA, Muravyova EA, Skachko IV, Shamshin DD. Modificirovannyj metod izucheniya reakcii glikoksidacii [A modified method for studying the glycoxidation reaction]. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta = Journal of VolgSMU. 2020;2(74):61–66. Russian
  30. Litvinov RA, Usmiyanova LE, Klimenko DR, Gontareva AV. Paradoksal’naya aktivnost’ aminoguanidina v modeli glikoksidacii v prisutstvii kationov cu(II) [Paradoxal activity of aminoguanidine in the model of glycoxidation with copper cations]. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta = Journal of VolgSMU. 2020;3(75):159–165. Russian
  31. Ramirez Segovia A.S., Wrobel K., Acevedo Aguilar F.J., Corrales Escobosa A.R., Wrobel K. Effect of Cu(II) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach. Metallomics. 2017;9(2):132–40. doi: 10.1039/c6mt00235h.
  32. Michalska-Mosiej M, Socha K, Soroczyńska J, Karpińska E, Łazarczyk B, Borawska MH. Selenium, Zinc, Copper, and Total Antioxidant Status in the Serum of Patients with Chronic Tonsillitis. Biol Trace Elem Res. 2016 Sep;173(1):30–4. doi: 10.1007/s12011-016-0634-2.
  33. Shanmugam G, Polavarapu PL. Vibrational circular dichroism spectra of protein films: thermal denaturation of bovine serum albumin. Biophys Chem. 2004 Sep 1;111(1):73–7. doi: 10.1016/j.bpc.2004.04.005.
  34. Chebotareva NA, Roman SG, Borzova VA, Eronina TB, Mikhaylova VV, Kurganov BI. Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding. Int J Mol Sci. 2020 Jul 13;21(14):4940. doi: 10.3390/ijms21144940.
  35. Séro L, Sanguinet L, Blanchard P, Dang BT, Morel S, Richomme P, Séraphin D, Derbré S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules. 2013 Nov 19;18(11):14320–39. doi: 10.3390/molecules181114320.
  36. Beisswenger PJ, Howell S, Mackenzie T, Corstjens H, Muizzuddin N, Matsui MS. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol Ther. 2012 Mar;14(3):285–92. doi: 10.1089/dia.2011.0108.
  37. Zhang Y, Baloglu FK, Ziemer LEH, Liu Z, Lyu B, Arendt LM, Georgakoudi I. Factors associated with obesity alter matrix remodeling in breast cancer tissues. J Biomed Opt. 2020 Jan;25(1):1–14. doi: 10.1117/1.JBO.25.1.014513.
  38. Oto N, Oshita S, Makino Y, Kawagoe Y, Sugiyama J, Yoshimura M. Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy. Meat Sci. 2013 Mar;93(3):579–85. doi: 10.1016/j.meatsci.2012.11.010.
  39. Yang H, Xiao X, Zhao X, Wu Y.”Intrinsic fluorescence spectra of tryptophan, tyrosine and phenyloalanine”, Proc. SPIE 10255, Selected Papers of the Chinese Society for Optical Engineering Conferences held October and November 2016, 102554M (8 March 2017). doi: 10.1117/12.2268397.
  40. Lakowicz JR. Protein Fluorescence. Principles of Fluorescence Spectroscopy. Springer, Boston, MA. (2006). doi: 10.1007/978-0-387-46312-4_16.
  41. Bansode S, Bashtanova U, Li R, Clark J, Müller KH, Puszkarska A, Goldberga I, Chetwood HH, Reid DG, Colwell LJ, Skepper JN, Shanahan CM, Schitter G, Mesquida P, Duer MJ. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci Rep. 2020 Feb 25;10(1):3397. doi: 10.1038/s41598-020-60250-9.
  42. Hunt JV, Wolff SP. Oxidative glycation and free radical production: a causal mechanism of diabetic complications. Free Radic Res Commun. 1991;12–13:115–23. doi: 10.3109/10715769109145775.
  43. Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer’s Disease and Therapeutics Approaches. Int J Mol Sci. 2020 Oct 16;21(20):7660. doi: 10.3390/ijms21207660.
  44. Chetyrkin SV, Mathis ME, Ham AJ, Hachey DL, Hudson BG, Voziyan PA. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine. Free Radic Biol Med. 2008 Apr 1;44(7):1276–85. doi: 10.1016/j.freeradbiomed.2007.09.016.
  45. Wang SS, Chen YT, Chou SW. Inhibition of amyloid fibril formation of beta-amyloid peptides via the amphiphilic surfactants. Biochim Biophys Acta. 2005 Sep 25;1741(3):307–13. doi: 10.1016/j.bbadis.2005.05.004.
  46. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S. Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol. 2005 Sep;151(3):229–38. doi: 10.1016/j.jsb.2005.06.006.
  47. Wu FY, Zhang LN, Ji ZJ, Wan XF. Spectroscopic investigation of the interaction between thiourea-zinc complex and serum albumin // Journal of Luminescence. 2010;130:1280–1284.
  48. Zhang M, Qiao J, Zhang S, Qi L. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine. Talanta. 2018 May 15;182:595-599. doi: 10.1016/j.talanta.2018.02.035.
  49. Tahmasebinia F, Emadi S. Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron. Biometals. 2017 Apr;30(2):285–293. doi: 10.1007/s10534-017-0005-2.
  50. Kheirouri S, Alizadeh M, Maleki V. Zinc against advanced glycation end products. Clin Exp Pharmacol Physiol. 2018 Jun;45(6):491–498. doi: 10.1111/1440-1681.12904.
  51. Zhuang X, Pang X, Zhang W, Wu W, Zhao J, Yang H, Qu W. Effects of zinc and manganese on advanced glycation end products (AGEs) formation and AGEs-mediated endothelial cell dysfunction. Life Sci. 2012 Jan 16;90(3–4):131–9. doi: 10.1016/j.lfs.2011.10.025.
  52. Iannuzzi C, Irace G, Sirangelo I. Differential effects of glycation on protein aggregation and amyloid formation. Front Mol Biosci. 2014 Sep 2;1:9. doi: 10.3389/fmolb.2014.00009.
  53. Banerjee S. Effect of glyoxal and 1-methylisatin on stress-induced fibrillation of Hen Egg White Lysozyme: Insight into the anti-amyloidogenic property of the compounds with possible therapeutic implications. Int J Biol Macromol. 2020 Dec 15;165(Pt A):1552–61. doi: 10.1016/j.ijbiomac.2020.10.017.
  54. Persichilli C, Hill SE, Mast J, Muschol M. Does Thioflavin-T Detect Oligomers Formed During Amyloid Fibril Assembly. Biophysical Journal. 2011;100(3). Suppl 1:538A. doi: 10.1016/j.bpj.2010.12.3140.
  55. Hanczyc P, Fita P. Laser Emission of Thioflavin T Uncovers Protein Aggregation in Amyloid Nucleation Phase. ACS Photonics. 2021. doi: 10.1021/acsphotonics.1c00082.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Structures of various advanced glycation end products

Download (149KB)

Copyright (c) 2021 Litvinov R.A., Gontareva A.V., Usmiyanova L.E., Klimenko D.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies