Correction of psychoneurological signs of acute alcohol intoxication in rats with a new acetylcysteine-based composition

Cover Page

Cite item

Abstract

The aim of the study is an experimental confirmation of the use of a new combination of biologically active substances with tonic and antioxidant effects. This combination contains acetylcysteine in its composition to reduce the severity of psychoneurological consequences of alcohol intoxication.

Materials and methods. The study was conducted on male Wistar rats. The post-intoxication state was simulated by a single injection of ethanol (3 g/kg, intraperitoneally). Half an hour after awakening, the rats were divided into groups, which were injected with saline, acetylcysteine (1 g/kg), taurine (20 mg/kg), caffeine (20 mg/kg), succinic acid (100 mg/kg), lipoic acid (100 mg/kg), pyridoxine (400 mg/kg), or a combination of acetylcysteine with all these substances taken in a twice lower dose (except taurine). Before the treatment and 3 hours after it, the degree of neurological disorders was fixed according to the Combs and D’Alecy scale, in the Open Field test and the Adhesion test. Then the animals were euthanized to assess the level of glutathione, triglycerides and malondialdehyde (MDA) in liver homogenates, to determine the activity of enzymatic antioxidant systems and serum aminotransferases.

Results. In the animals injected with alcohol, there were evident signs of neuropsychiatric disorders, manifested in a low motor activity and a decrease in fine motor skills. This state did not change after an oral administration of saline. After the administration of acetylcysteine, taurine, caffeine, succinic and lipoic acids, pyridoxine and, to a greater extent, their compositions, the compensation of neuropsychiatric disorders and improvement of fine motor skills were notified. In the liver of these animals, the levels of glutathione, MDA, triglycerides, and the activity of antioxidant defense enzymes corresponded to the physiological norm.

Conclusion. The introduction of a combination of acetylcysteine with taurine, caffeine, pyridoxine, lipoic and succinic acids after an acute alcohol intoxication, to a greater extent than each of the substances separately, contributes to the function retention of the antioxidant system of hepatocytes. Besides, it reduces the level of their dystrophic changes and leads to a decrease in the severity of psychoneurological disturbances in the experimental animals.

About the authors

Denis V. Kurkin

Volgograd State Medical University

Email: strannik986@mail.ru
ORCID iD: 0000-0002-1116-3425

Doctor of Sciences (Pharmacy), senior researcher of the laboratory of cardiovascular medications, Scientific Center of Drug Research, the Head of interdepartmental center of practical and scientific work of Faculty of Pharmacy

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Evgeny I. Morkovin

Volgograd State Medical University; Volgograd Medical Research Center

Author for correspondence.
Email: e.i.morkovin@gmail.com
ORCID iD: 0000-0002-7119-3546

Candidate of Sciences (Medicine), Associate Professor, the head of the laboratory of neuropsychotropic drugs, Scientific Center of Drug Research; senior researcher of the laboratory of genomic and proteomic researches

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131; 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Nazar A. Osadchenko

Volgograd State Medical University

Email: n.a.osadchenko@gmail.com
ORCID iD: 0000-0002-7398-2186

post-graduate student, Department of Pharmacology and Pharmacy

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Dmitry A. Bakulin

Volgograd State Medical University

Email: mbfdoc@gmail.com
ORCID iD: 0000-0003-4694-3066

Candidate of Sciences (Medicine), senior researcher of the laboratory of cardiovascular medications, Scientific Center of Drug Research

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Elizaveta E. Abrosimova

Volgograd State Medical University

Email: abrosimiva.volgmed@gmail.com
ORCID iD: 0000-0002-6472-6906

post-graduate student, Department of Pharmacology and Pharmacy

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Marina A. Dubrovina

Volgograd State Medical University

Email: dubrovina.volgmed@gmail.ru
ORCID iD: 0000-0003-1903-8589

post-graduate student, Department of Pharmacology and Pharmacy

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Nikolay S. Kovalev

Volgograd State Medical University

Email: kovalev.volgmed@gmail.com
ORCID iD: 0000-0003-3498-3810

post-graduate student, Department of Pharmacology and Pharmacy

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Yulia V. Gorbunova

Volgograd State Medical University

Email: yvgorbunova@yandex.ru

Candidate of Sciences (Pharmacy), document controller of the Department of Pharmacology and Pharmacy

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Ivan N. Tyurenkov

Volgograd State Medical University

Email: fibfuv@mail.ru
ORCID iD: 0000-0001-7574-3923

Doctor of Sciences (Medicine), professor, Corresponding Member of the Russian Academy of Sciences, the Head of the Department of Pharmacology and Biopharmaceutics, Faculty of Advanced Medical Studies, Head of laboratory of cardiovascular medications, Scientific Center of Drug Research

Russian Federation, 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

References

  1. GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematiac nalysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–1035. doi: 10.1016/S0140-6736(1 8)31310-2.
  2. Alford C, Broom, C., Carver, H., Johnson, S. J., Lands, S., Reece, R., & Verster, J. C. The Impact of Alcohol Hangover on Simulated Driving Performance During a ‘Commute to Work’-Zero and Residual Alcohol Effects Compared. Journal of clinical medicine, 2020;9(5):1435. doi: 10.3390/jcm9051435.
  3. Verster JC, Penning R. Treatment and prevention of alcohol hangover. Current Drug Abuse Reviews. 2010;3(2):103–109. doi: 10.2174/1874473711003020103
  4. Kurkin D.V., Morkovin E.I., Osadchenko N.A., Knyshova L.P., Bakulin D.A., Abrosimova E.E., Gorbunova Yu.V., Tyurenkov I.N. Correction of psychological and neurological signs of alcohol hangover in rats with acetylcysteine. Pharmacy & Pharmacology. 2019;7(5):291–299. doi: 10.19163/2307-9266-2019-7-5-291-299. Russian
  5. Vohra BP, Hui X. Improvement of impaired memory in mice by taurine. Neural Plast. 2000;7(4):245–59. doi: 10.1155/NP.2000.245
  6. SanMiguel N, López-Cruz L, Müller CE, Salamone JD, Correa M. Caffeine modulates voluntary alcohol intake in mice depending on the access conditions: Involvement of adenosine receptors and the role of individual differences. Pharmacol Biochem Behav. 2019 Nov;186:172789. doi: 10.1016/j.pbb.2019.172789
  7. Kovalenko AL, Petrov AYu, inventors; Ekofarmpatentmenedzhment AG (SN), assignee. Farmacevticheskaya kompoziciya, stimuliruyushchaya biosintez s-adenozilmetionina, i peroral’noe lekarstvennoe sredstvo. [Pharmaceutical composition stimulating the biosynthesis of s-adenosylmethionine and oral drug]. Russian Federation patent RU 015508. 2011 Aug 31. Russian
  8. Sehirli O, Tatlidede E, Yüksel M, Erzik C, Cetinel S, Yeğen BC, Sener G. Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats. Pharmacology. 2008;81(2):173–80. doi: 10.1159/000111145
  9. Morkovin EI, Kurkin DV, Tyurenkov IN. The assessment of the psychoneurological impairments in rodents: Basic methods. I.P. Pavlov Journal of Higher Nervous Activity. 2018; 68(1):3–15. doi: 10.7868/s004446771801001x. Russian
  10. Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol. 2011;57(3):333–7. doi: 10.1016/j.jjcc.2011.01.007.
  11. Simola N, Tronci E, Pinna A, Morelli M. Subchronic-intermittent caffeine amplifies the motor effects of amphetamine in rats. Amino Acids. 2006;31(4):359–63. doi: 10.1007/s00726-006-0373-3.
  12. Gasior M, Jaszyna M, Munzar P, Witkin JM, Goldberg SR. Caffeine potentiates the discriminative-stimulus effects of nicotine in rats. Psychopharmacology (Berl). 2002;162(4):385–95. doi: 10.1007/s00213-002-1113-3.
  13. Green TA, Schenk S. Dopaminergic mechanism for caffeine-produced cocaine seeking in rats. Neuropsychopharmacology. 2002;26(4):422–30. doi: 10.1016/S0893-133X(01)00343-8.
  14. McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312. doi: 10.1016/j.neubiorev.2016.09.001.
  15. Ruby CL, Adams CA, Knight EJ, Nam HW, Choi DS. An essential role for adenosine signaling in alcohol abuse. Curr Drug Abuse Rev. 2010;3(3):163–74. doi: 10.2174/1874473711003030163.
  16. Correa M, Arizzi MN, Betz A, Mingote S, Salamone JD. Open field locomotor effects in rats after intraventricular injections of ethanol and the ethanol metabolites acetaldehyde and acetate. Brain Res Bull. 2003;62(3):197–202. doi: 10.1016/j.brainresbull.2003.09.013.
  17. Zhang Q, Yu YP, Ye YL, Zhang JT, Zhang WP, Wei EQ. Spatiotemporal properties of locomotor activity after administration of central nervous stimulants and sedatives in mice. Pharmacol Biochem Behav. 2011;97(3):577–85. doi: 10.1016/j.pbb.2010.09.011.
  18. Dash PK, Moore AN, Moody MR, Treadwell R, Felix JL, Clifton GL. Post-trauma administration of caffeine plus ethanol reduces contusion volume and improves working memory in rats. J Neurotrauma. 2004;21(11):1573–83. doi: 10.1089/neu.2004.21.1573.
  19. Piriyawat P, Labiche LA, Burgin WS, Aronowski JA, Grotta JC. Pilot dose-escalation study of caffeine plus ethanol (caffeinol) in acute ischemic stroke. Stroke. 2003;34(5):1242–5. doi: 10.1161/01.STR.0000067706.23777.04.
  20. McCarty MF. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med Hypotheses. 2013;80(4):456–62. doi: 10.1016/j.mehy.2012.12.040.
  21. Chen X, Sebastian BM, Tang H, McMullen MM, Axhemi A, Jacobsen DW, Nagy LE. Taurine supplementation prevents ethanol-induced decrease in serum adiponectin and reduces hepatic steatosis in rats. Hepatology. 2009;49(5):1554–62. doi: 10.1002/hep.22811.
  22. Harada H, Kitazaki K, Tsujino T, Watari Y, Iwata S, Nonaka H, Hayashi T, Takeshita T, Morimoto K, Yokoyama M. Oral taurine supplementation prevents the development of ethanol-induced hypertension in rats. Hypertens Res. 2000;23(3):277–84. doi: 10.1291/hypres.23.277.
  23. Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci. 2010 Aug 24;17 Suppl 1(Suppl 1):S6. doi: 10.1186/1423-0127-17-S1-S6.
  24. El Idrissi A, Boukarrou L, Splavnyk K, Zavyalova E, Meehan EF, L’Amoreaux W. Functional implication of taurine in aging. Adv Exp Med Biol. 2009;643:199–206. doi: 10.1007/978-0-387-75681-3_20.
  25. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008;321(5895):1493–5. doi: 10.1126/science.1158554.
  26. Budas GR, Disatnik MH, Chen CH, Mochly-Rosen D. Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCvarepsilon) knockout mice. J Mol Cell Cardiol. 2010;48(4):757–64. doi: 10.1016/j.yjmcc.2009.10.030.
  27. He L, Liu B, Dai Z, Zhang HF, Zhang YS, Luo XJ, Ma QL, Peng J. Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation. Eur J Pharmacol. 2012;678(1–3):32–8. doi: 10.1016/j.ejphar.2011.12.042.
  28. Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086–1101. doi: 10.1016/j.bbabio.2016.03.012.
  29. de Castro Fonseca M, Aguiar CJ, da Rocha Franco JA, Gingold RN, Leite MF. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal. 2016;14:3. doi: 10.1186/s12964-016-0126-1.
  30. Gonzalez LE, Parada MA, Hernandez L. Pyridoxine acts in the brain to reduce ethanol toxicity in rats. Alcohol. 1992;9(6):519–22. doi: 10.1016/0741-8329(92)90090-w.
  31. Mazraati P, Minaiyan M. Hepatoprotective Effect of Metadoxine on Acetaminophen-induced Liver Toxicity in Mice. Adv Biomed Res. 2018;7:67. doi: 10.4103/abr.abr_142_17.
  32. Khan MA, Jensen K, Krogh HJ. Alcohol-induced hangover. A double-blind comparison of pyritinol and placebo in preventing hangover symptoms. Q J Stud Alcohol. 1973;34(4):1195–201.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Study design

Download (264KB)
3. Figure 2 – The levels of neurological deficits assessed by the Combs & D’Alecy scale (A) and the time of removing a foreign object from the volar surface of the rats’ fore paws (B), indicators of locomotor (C) and exploratory (D) activities in the open field test in the rats after acute alcohol intoxication

Download (161KB)
4. Figure 3 – Activity of superoxide dismutase (SOD), aspartate aminotransferase (AST) and alanine aminotransferase (ALT); the content of triglycerides, malonic dialdehyde (MDA), glutathione in rat liver homogenates, obtained after acute alcohol intoxication

Download (190KB)

Copyright (c) 2020 Kurkin D.V., Morkovin E.I., Osadchenko N.A., Bakulin D.A., Abrosimova E.E., Dubrovina M.A., Kovalev N.S., Gorbunova Y.V., Tyurenkov I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies